Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №64» г. Брянска

Городская научно-практическая конференция

«Первые шаги в науку»

Научно-исследовательская работа

«Теорема Виета для уравнений третьей и четвертой степени»

Математика

Выполнил: ученик 11б класса

Шанов Илья Алексеевич

Научный руководитель:

учитель математики,

кандидат физ.-мат. наук

Быков Сергей Валентинович

Брянск 2012

    Введение ………………………………………………………………… 3

    Цели и задачи …………………………………………………………… 4

    Краткая историческая справка ………………………………………… 4

    Квадратное уравнение …………………………………………………. 5

    Кубическое уравнение …………………………………………………. 6

    Уравнение четвертой степени ………………………………………… 7

    Практическая часть ……………………………………………………. 9

    Список литературы …………………………………………………… 12

    Приложение …………………………………………………………… 13

Введение

Основная теорема алгебры утверждает, что поле является алгебраическим замкнутым, другими словами, что уравнения n-ой степени с комплексными коэффициентами (в общем случае) над полем имеет ровно n комплексных корней. Уравнения третьей степени решаются формулой Кордано. Уравнения четвёртой степени методом Феррари. Кроме того, что в теории алгебры доказано, что если - корень уравнения, то так же является корнем этого уравнения. Для кубического уравнения возможны следующие случаи:

    все три корня – действительные;

    два корня комплексных, один действительный.

Отсюда следует, что любое кубическое уравнение имеет хотя бы один действительный корень.

Для уравнения четвертой степени:

    Все четыре корня различные.

    Два корня действительных, два – комплексных.

    Все четыре корня комплексные.

Данная работа посвящена тщательному изучению теоремы Виета: её формулировке, доказательству, а так же решению задач с применением этой теоремы.

Проделанная работа направлена помощь ученика 11-х классов, которым предстоит сдача ЕГЭ, а так же для юных математиков, которым небезразличны более простые и эффективные методы решений в различных областях математики.

В приложении к этой работе предоставляется сборник задач для самостоятельного решения и закрепления нового материала, исследуемого мной.

Этот вопрос нельзя оставлять без внимания, так как он важен для математики как для науки в целом, так и для учащихся и интересующихся решение подобных задач.

Цели и задачи работы :

    Получить аналог теоремы Виета для уравнения третьей степени.

    Доказать аналог теоремы Виета для уравнения третьей степени.

    Получить аналог теоремы Виета для уравнения четвертой степени.

    Доказать аналог теоремы Виета для уравнения четвертой степени.

    Рассмотреть применения данных вопросов к решению практических задач.

    • Убедиться в практичности применения данной теоремы.

    Углубить математические знания в области решения уравнений.

    Развить интерес к математике.

Краткая историческая справка

По праву достойна в стихах быть воспета

О свойствах корней ТЕОРЕМА ВИЕТА...

ФРАНСУА ВИЕТ(1540-1603) - французский математик. По профессии юрист. В 1591 году ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений; благодаря этому стало впервые возможным выражение свойств уравнений и их корней общими формулами. Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений. Для приближённого решения уравнений с численными коэффициентами Виет предложил метод, схожий с позднейшим методом Ньютона. В тригонометрии Франсуа Виет дал полное решение задачи об определении всех элементов плоского или сферического треугольника по трём данным, нашёл важные разложения cos и sin по степеням cos х и sin х. Он впервые рассмотрел бесконечные произведения. Сочинения Виета написаны трудным языком и поэтому получили в свое время меньшее распространение, чем заслуживали.

Квадратное уравнение

Для начала вспомним формулы Виета для уравнения второй степени, которые мы узнали в программе школьного курса обучения.

Т
еорема Виета
для квадратного уравнения (8 класс)

Е
сли и – корни квадратного уравнения то

т. е. сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Так же, вспомним теорему, обратную теореме Виета :

Если числа - p и q таковы, что


то и - корни уравнения

Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения.

Теорема Виета позволяет угадывать целые корни квадратного трехчлена.

Кубическое уравнение

Теперь перейдём, непосредственно, к постановке и решению кубического уравнения с помощью теоремы Виета.

Формулировка

К
убическое уравнение - это уравнение третьего порядка, вида

где a ≠ 0 .

Если а = 1 , то уравнение называют приведённым кубическим уравнением:

Итак, нужно доказать, что для уравнения

справедлива следующая теорема:

п
усть корни данного уравнения, тогда

Доказательство

Представим многочлен

выполним преобразования:

Итак, получим, что

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при соответствующих степенях.

Это значит, что

Что и требовалось доказать.

Теперь рассмотрим теорему, обратную теореме Виета для уравнения третьей степени .

Ф
ормулировка

Е
сли числа таковы, что

Уравнение четвертой степени

Теперь перейдём к постановке и решению уравнения четвертой степени с помощью теоремы Виета для уравнения четвертой степени.

Формулировка

У
равнение четвертой степени - уравнение вида

г
де a ≠ 0 .

Е
сли а = 1 , то уравнение называют приведённым

И
так, докажем, что для уравнения

с
праведлива следующая теорема: пусть корни данного уравнения, тогда

Доказательство

Представим многочлен

выполним преобразования:

Итак, получим, что

Мы знаем, что два многочлена равны тогда и только тогда, когда равны их коэффициенты при соответствующих степенях.

Это значит, что

Что и требовалось доказать.

Рассмотрим теорему, обратную теореме Виета для уравнения четвёртой степени .

Формулировка

Если числа таковы, что


то эти числа являются корнями уравнения

Практическая часть

Теперь рассмотрим решения задач, с помощью теорем Виета для уравнений третьей и четвертой степени.

Задача №1


Ответ: 4, -4.

Задача №2


Ответ: 16, 24.

Для решения данных уравнений можно использовать формулы Кардано и метод Феррари соответственно, но, используя теорему Виета, мы заведомо знаем сумму и произведение корней этих уравнений.

Задача №3

    Составить уравнение третьей степени, если известно, что сумма корней равна 6, по парное произведение корней равно 3, а произведение -4.

Составим уравнение, получим

Задача №4

    Составить уравнение третьей степени, если известно, что сумма корней равна 8 , по парное произведение корней равно 4 , утроенные произведение равно 12 , а произведение 20 .

    Решение: пользуясь формулой Виета, получим


Составим уравнение, получим

С помощью теоремы Виета мы легко составили уравнения по их корням. Это самый рациональный способ решения данных задач.

Задача №5


где a, b, c – формулы Герона.

Раскроем скобки и преобразуем выражение, получим

З
аметим, что подкоренное выражение является кубическим выражением . Воспользуемся теоремой Виета для соответствующего ему кубического уравнения, тогда имеем, что

З

ная, что получим:


Из решения этой задачи видно, что теорема Виета применима к задачам из разных областей математики.

Заключение

В данной работе был исследован метод решения уравнения третьей и четвертой степеней с помощью теоремы Виета. Выведенные в работе формулы просты в использовании. В ходе исследования стало очевидно, что в некоторых случаях этот метод эффективен больше, чем формула Кордано и метод Феррари для уравнений третьей и четвёртой степеней соответственно.

Теорема Виета была применена на практике. Был решён ряд задач, которые помогли лучше закрепить новый материал.

Это исследование было для меня очень интересным и познавательным. Углубив свои знания в математике, я открыл много интересного и с удовольствием занимался данным исследованием.

Но мое исследование в области решения уравнений на этом не закончено. В будущем я планирую заняться исследованием решения уравнения n-ой степени с помощью теоремы Виета.

Хочу выразить огромную благодарность своему научному руководителю, кандидату физико-математических наук, а возможность такого необычного исследования и постоянное внимание в работе.

Список литературы

    Виноградов И.М. Математическая энциклопедия. М., 1977.

    В. Б. Лидский, Л. В. Овсянников, А. Н. Тулайков, М. И. Шабунин. Задачи по элементарной математике, Физматлит, 1980.

теорема Понселе для треугольника... г2 - степенью или... дуга третьей луночки меньше... уравнение , дающее четвертую ... математик Ф. Виет математик ...
  • Научно – исследовательская работа по математике

    Исследовательская работа

    ... Научно исследовательская работа по математике Геометрия... теорема Понселе для треугольника... г2 - степенью или... дуга третьей луночки меньше... уравнение , дающее четвертую ... математик Ф. Виет вычислил в 1579 г. я с 9 знаками. Голландский математик ...

  • Книга

    ... для уравнении третьей и четвертой степени математики исследовательской работе . Лучшие ученые Франции...

  • Краткий очерк истории математики 5–е издание исправленное

    Книга

    ... для многих позднейших учебников по алгеоре. В ней изложение доведено до теории уравнении третьей и четвертой степени ... теоретической и прикладной математики . Внимание уделялось как преподаванию, так и исследовательской работе . Лучшие ученые Франции...

  • Одним из методов решений квадратного уравнения является применение формулы ВИЕТА , которую назвали в честь ФРАНСУА ВИЕТА.

    Он был известным юристом, и служил в 16 веке у французского короля. В свободное время занимался астрономией и математикой. Он установил связь между корнями и коэффициентами квадратного уравнения.

    Достоинства формулы:

    1 . Применив формулу, можно быстро найти решение. Потому что не нужно вводить в квадрат второй коэффициент, затем из него вычитать 4ас, находить дискриминант, подставлять его значение в формулу для нахождения корней.

    2 . Без решения можно определить знаки корней, подобрать значения корней.

    3 . Решив систему из двух записей, несложно найти сами корни. В приведенном квадратном уравнении сумма корней равна значению второго коэффициента со знаком минус. Произведение корней в приведенном квадратном уравнении равно значению третьего коэффициента.

    4 . По данным корням записать квадратное уравнение, то есть решить обратную задачу. Например, этот способ применяют при решении задач в теоретической механике.

    5 . Удобно применять формулу, когда старший коэффициент равен единице.

    Недостатки:

    1 . Формула не универсальна.

    Теорема Виета 8 класс

    Формула
    Если x 1 и x 2 - корни приведенного квадратного уравнения x 2 + px + q = 0 , то:

    Примеры
    x 1 = -1; x 2 = 3 - корни уравнения x 2 - 2x - 3 = 0.

    P = -2, q = -3.

    X 1 + x 2 = -1 + 3 = 2 = -p,

    X 1 x 2 = -1 3 = -3 = q.

    Обратная теорема

    Формула
    Если числа x 1 , x 2 , p, q связаны условиями:

    То x 1 и x 2 - корни уравнения x 2 + px + q = 0 .

    Пример
    Составим квадратное уравнение по его корням:

    X 1 = 2 - ? 3 и x 2 = 2 + ? 3 .

    P = x 1 + x 2 = 4; p = -4; q = x 1 x 2 = (2 - ? 3 )(2 + ? 3 ) = 4 - 3 = 1.

    Искомое уравнение имеет вид: x 2 - 4x + 1 = 0.

    2.5 Формула Виета для многочленов (уравнений) высших степеней

    Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

    Пусть многочлен

    P(x) = a 0 x n + a 1 x n -1 ­­­ + … +a n

    Имеет n различных корней x 1 , x 2 …, x n .

    В этом случае он имеет разложение на множители вида:

    a 0 x n + a 1 x n-1 +…+ a n = a 0 (x – x 1)(x – x 2)…(x – x n)

    Разделим обе части этого равенства на a 0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

    x n + ()x n -1 + … + () = x n – (x 1 + x 2 + … + x n) x n -1 + (x 1 x 2 + x 2 x 3 + … + x n -1 x n)x n -2 + … +(-1) n x 1 x 2 … x n

    Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

    x 1 + x 2 + … + x n = -

    x 1 x 2 + x 2 x 3 + … + x n -1 x n =

    x 1 x 2 … x n = (-1) n


    Например, для многочленов третей степени

    a 0 x³ + a 1 x² + a 2 x + a 3

    Имеем тождества

    x 1 + x 2 + x 3 = -

    x 1 x 2 + x 1 x 3 + x 2 x 3 =

    x 1 x 2 x 3 = -

    Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x 1 , x 2 …, x n данного уравнения, а правые части выражаются через коэффициент многочлена.

    2.6 Уравнения, сводимые к квадратным (биквадратные)

    К квадратным уравнениям сводятся уравнения четвертой степени:

    ax 4 + bx 2 + c = 0,

    называемые биквадратными, причем, а ≠ 0.

    Достаточно положить в этом уравнении х 2 = y, следовательно,

    ay² + by + c = 0

    найдём корни полученного квадратного уравнения


    y 1,2 =

    Чтобы найти сразу корни х 1, x 2, x 3, x 4 , заменим y на x и получим

    x² =

    х 1,2,3,4 = .

    Если уравнение четвёртой степени имеет х 1 , то имеет и корень х 2 = -х 1 ,

    Если имеет х 3 , то х 4 = - х 3 . Сумма корней такого уравнения равна нулю.

    2х 4 - 9x² + 4 = 0

    Подставим уравнение в формулу корней биквадратных уравнений:

    х 1,2,3,4 = ,

    зная, что х 1 = -х 2 , а х 3 = -х 4 , то:

    х 3,4 =

    Ответ: х 1,2 = ±2; х 1,2 =


    2.7 Исследование биквадратных уравнений

    Возьмем биквадратное уравнение

    ax 4 + bx 2 + c = 0,

    где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

    2.8 Формула Кардано

    Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

    х =

    Эта формула определяет корни общего уравнения третей степени:

    ax 3 + 3bx 2 + 3cx + d = 0.

    Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.


    F ¢(xо) = 0, >0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные. На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка . Пример 3.22. Найти экстремумы функции f(x) ...

    Список или выбрать из 2-3 текстов наиболее интересные места. Таким образом, мы рассмотрели общие положения по созданию и проведению элективных курсов, которые будут учтены при разработке элективного курса по алгебре для 9 класса «Квадратные уравнения и неравенства с параметром». Глава II. Методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» 1.1. Общие...

    Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n - ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с...



    С единицами измерений физических величин в системе MathCAD? 11. Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

    Список литературы


    1. Алгебра: учебник для учащихся 9 класса с углублённым изучением математики/ Н.Я.Виленкин, А.Н.Виленкин, Г.С.Сурвилло и др.

    2. Бабинская, И. Л. Задачи математических олимпиад. / И. Л. Бабинская – М.: Просвещение, 1975.

    3. Болгарский Б. В. Очерки по истории математики/ Б. В. Болгарский. – Минск, 1979.

    4. Математическая энциклопедия / т.2, под ред. Виноградова И.М. М.: Советская энциклопедия, 1979г.

    5. Перельман, Я.И. Занимательная алгебра. / Я. И. Перельман – М.: Наука, 1976г.

    6. Школьная энциклопедия. Математика. / под редакцией Никольский С. М. – Москва: Издательство «Большая российская энциклопедия», 1996.

    7. Элективные ориентационные курсы и другие средства профильной ориентации в предпрофильнной подготовке школьников. Учебно-методическое пособие / Науч. ред. С. Н. Чистяков. М.: АПК и ПРО, 2003.
    8. Интернет ресурсы:

    Сайт "Спроси Алену", Веб-сайт EqWorld, http://alexlarin.narod.ru/Stats/pavlova1.html

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные