Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Предмет:

"Теория автоматического управления"

Тема:

"Методы исследования нелинейных систем"

1. Метод дифференциальных уравнений

Дифференциальное уравнение замкнутой нелинейной системы n-го порядка (рис. 1) можно преобразовать к системе n-дифференциальных уравнений первого порядка в виде:

где: – переменные, характеризующие поведение системы (одна из них может быть регулируемая величина); – нелинейные функции; u – задающее воздействие.

Обычно, эти уравнения записываются в конечных разностях:

,

где – начальные условия.

Если отклонения

не большие, то эту систему можно решать, как систему алгебраических уравнений. Решение можно представить графически.

2. Метод фазового пространства

Рассмотрим случай, когда внешнее воздействие равно нулю (U = 0).

Движение системы определяется изменением ее координат -

в функции времени. Значения в любой момент времени характеризует состояние (фазу) системы и определяет координаты системы имеющей n – осей и могут быть представлены как координаты некоторой (изображающей) точки М (рис. 2).

Фазовым пространством называется пространство координат системы.

С изменением времени t точка М движется по траектории, называемой фазовой траекторией . Если менять начальные условия получим семейство фазовых траекторий, называемых фазовым портретом . Фазовый портрет определяет характер переходного процесса в нелинейной системе. Фазовый портрет имеет особые точки, к которым стремятся или от которых уходят фазовые траектории системы (их может быть несколько).

Фазовый портрет может содержать замкнутые фазовые траектории, которые называются предельными циклами. Предельные циклы характеризуют автоколебания в системе. Фазовые траектории нигде не пересекаются, кроме особых точек, характеризующих равновесные состояния системы. Предельные циклы и состояния равновесия могут быть устойчивыми или не устойчивыми.

Фазовый портрет полностью характеризует нелинейную систему. Характерной особенностью нелинейных систем является наличие различных типов движений, нескольких состояний равновесия, наличие предельных циклов.

Метод фазового пространства является фундаментальным методом исследования нелинейных систем. Исследовать нелинейных систем на фазовой плоскости гораздо проще и удобнее, чем с помощью построения графиков переходных процессов во временной области.

Геометрические построения в пространстве менее наглядны, чем построения на плоскости, когда система имеет второй порядок, при этом применяется метод фазовой плоскости.

Применение метода фазовой плоскости для линейных систем

Проанализируем связь между характером переходного процесса и кривыми фазовых траекторий. Фазовые траектории могут быть получены либо путем интегрирования уравнения фазовой траектории, либо путем решения исходного дифференциального уравнения 2-го порядка.

Пусть задана система (рис. 3).


Рассмотрим свободное движение системы. Приэтом: U(t)=0, e(t)=– x(t)



В общем виде дифференциальное уравнение имеет вид

где (1)

Это однородное дифференциальное уравнение 2-го порядка его характеристическое уравнение равно

. (2)

Корни характеристического уравнения определяются из соотношений

(3)

Представим дифференциальное уравнение 2-го порядка в виде системы

уравнений 1-го порядка:

(4) скорость изменения регулируемой величины.

В рассматриваемой линейной системе переменные x и y представляют собой фазовые координаты. Фазовый портрет строим в пространстве координат x и y, т.е. на фазовой плоскости.

Если исключим время из уравнения (1), то получим уравнение интегральных кривых или фазовых траекторий.


. (5)

Это уравнение с разделяющимися переменными

. (6)

Рассмотрим несколько случаев

1. Пусть корни характеристического уравнения (3) имеют вид

(т.е. ). (7)

При этом переходной процесс описывается уравнениями

x = A sin (wt+j), (8)

y = Aw cos (wt+j),

т.е. представляет собой незатухающие колебания с постоянной амплитудой А и начальной фазой – j.

На фазовой плоскости (рис. 4) эти уравнения представляют собой параметрические уравнения эллипса с полуосями А и wA (где A – постоянная интегрирования).

Если обозначить


Уравнение эллипса можно получить решением уравнения фазовых траекторий

(9)

Состояние равновесия определяется из условия

,

при этом x 0 = y 0 = 0.

Особая точка называется "центр" и соответствует устойчивому равновесию, так как фазовые траектории от нее не удаляются.

2. Пусть корни характеристического уравнения (3) имеют вид

(10)

При этом переходной процесс описывается уравнениями:

Из уравнения фазовых траекторий

получим уравнение

Это уравнение семейства гипербол при изменении A (рис 5).


Общим методом исследования устойчивости нелинейных систем является прямой метод Ляпунова. В его основе лежит теорема Ляпунова об устойчивости нелинейных систем. В качестве аппарата исследования используется так называемая функция Ляпунова, представляющая собой знако-определенную функцию координат системы, имеющую также знако-определенную производную по времени. Применение этого метода ограничивается его сложностью.

Более простым методом расчета устойчивости нелинейных систем является метод, разработанный румынским ученым В. М. Поповым. Однако он пригоден для некоторых частных случаев.

Процессы в нелинейной системе могут быть исследованы на основе кусочно-линейной аппроксимации. В этом случае нелинейные характеристики отдельных звеньев разбивают на ряд линейных участков, в пределах которых задача оказывается линейной и может быть решена достаточно просто. На границах участков необходимо произвести «сшивание» отдельных кусков процесса в единый процесс. Метод может применяться, если число участков, на которые разбивается нелинейная характеристика, невелико. Это имеет, например, место для релейных характеристик (см. рис. 5.1). При большом числе участков метод оказывается слишком громоздким. Однако использование ЭВМ позволяет преодолеть эту трудность и с успехом рассчитывать процессы в нелинейных системах при любых нелинейных характеристиках и вообще при наличии нелинейных зависимостей произвольного вида.

Метод фазового пространства в принципе позволяет исследовать системы с нелинейностями произвольного вида, а также с несколькими иелинейностями. При этом в фазовом пространстве строят так называемый фазовый портрет процессов, протекающих (в нелинейной системе. По виду фазового портрета можно судить об устойчивости, возможности возникновения автоколебаний, точности в установившемся режиме. Однако размерность фазового пространства равка порядку дифференциального уравнения нелинейной системы. Это затрудняет использование метода для исследования систем, описываемых дифференциальным уравнением выше второго порядка. В случае дифференциального уравнения второго порядка фазовое пространство представляет собой фазовую плоскость, и этот метод может быть с успехом применен .

Для анализа случайных процессов в нелинейных автоматических системах можно применять математический аппарат теории марковских случайных процессов. Однако сложность метода и возможность

решения уравнения Фоккера - Планка, которое требуется при анализе, только для уравнений первого и в некоторых случаях второго порядка, ограничивает его использование .

Все перечисленные методы относятся к числу точных. Их сложность и ограниченность применения привели к разработке приближенных, но более простых методов исследования нелинейных систем. Приближенные методы позволяют во многих случаях достаточно просто получить прозрачные и легко обозримые результаты анализа нелинейных систем }

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные