Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Пусть прямая проходит через точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Уравнение прямой, проходящей через точку М 1 , имеет вид у- у 1 = k (х - х 1), (10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку М 2 (х 2 у 2), то координаты этой точки должны удовлетворять уравнению (10.6): у 2 -у 1 = k (х 2 -х 1).

Отсюда находим Подставляя найденное значениеk в уравнение (10.6), получим уравнение прямой, проходящей через точки М 1 и М 2:

Предполагается, что в этом уравнении х 1 ≠ х 2 , у 1 ≠ у 2

Если х 1 = х 2 , то прямая, проходящая через точки М 1 (х 1 ,у I) и М 2 (х 2 ,у 2) параллельна оси ординат. Ее уравнение имеет вид х = х 1 .

Если у 2 = у I , то уравнение прямой может быть записано в виде у = у 1 , прямая М 1 М 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке М 1 (а;0), а ось Оу – в точке М 2 (0;b). Уравнение примет вид:
т.е.
. Это уравнение называетсяуравнением прямой в отрезках, т.к. числа а и b указывают, какие отрезки отсекает прямая на осях координат .

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку Мо (х О; у о) перпендикулярно данному ненулевому вектор n = (А; В).

Возьмем на прямой произвольную точку М(х; у) и рассмотрим вектор М 0 М (х - х 0 ; у - у о) (см. рис.1). Поскольку векторы n и М о М перпендикулярны, то их скалярное произведение равно нулю: то есть

А(х - хо) + В(у - уо) = 0. (10.8)

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору .

Вектор n= (А; В), перпендикулярный прямой, называется нормальным нормальным вектором этой прямой .

Уравнение (10.8) можно переписать в виде Ах + Ву + С =0 , (10.9)

где А и В координаты нормального вектора, С = -Ах о - Ву о - свободный член. Уравнение (10.9) есть общее уравнение прямой (см. рис.2).

Рис.1 Рис.2

Канонические уравнения прямой

,

Где
- координаты точки, через которую проходит прямая, а
- направляющий вектор.

Кривые второго порядка Окружность

Окружностью называется множество всех точек плоскости, равноотстоящих от данной точки, которая называется центром.

Каноническое уравнение круга радиуса R с центром в точке
:

В частности, если центр кола совпадает с началом координат, то уравнение будет иметь вид:

Эллипс

Эллипсом называется множество точек плоскости, сумма расстояний от каждой из которых до двух заданных точек и, которые называются фокусами, есть величина постоянная
, большая чем расстояние между фокусами
.

Каноническое уравнение эллипса, фокусы которого лежат на оси Ох, а начало координат посредине между фокусами имеет вид
где
a длина большой полуоси; b– длина малой полуоси (рис. 2).

Зависимость между параметрами эллипса
ивыражается соотношением:

(4)

Эксцентриситетом эллипса называется отношение межфокусного расстояния к большой оси 2а:

Директрисами эллипса называются прямые, параллельные оси Оу, которые находятся от этой оси на расстоянии. Уравнения директрис:
.

Если в уравнении эллипса
, тогда фокусы эллипса находятся на оси Оу.

Итак,

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор (α 1 , α 2), компоненты которого удовлетворяют условию А α 1 + В α 2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 –

нормальное уравнение прямой. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой.

уравнение этой прямой в отрезках:

уравнение этой прямой с угловым коэффициентом: (делим на 5)

нормальное уравнение прямой:

; cos φ = 12/13; sin φ= -5/13; p = 5.

C ледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.

Пример . Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см 2 .

Решение. Уравнение прямой имеет вид: , ab /2 = 8; a = 4; -4. a = -4 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Пример . Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат.

Решение . Уравнение прямой имеет вид: , где х 1 = у 1 = 0; x 2 = -2; y 2 = -3.

Данная статья раскрывает получение уравнения прямой, проходящей через две заданные точки в прямоугольной системе координат, расположенной на плоскости. Выведем уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат. Наглядно покажем и решим несколько примеров, касающихся пройденного материала.

Перед получением уравнения прямой, проходящей через две заданные точки необходимо обратить внимание на некоторые факты. Существует аксиома, которая говорит о том, что через две несовпадающие точки на плоскости возможно провести прямую и только одну. Иначе говоря, две заданные точки плоскости определяются прямой линией, проходящей через эти точки.

Если плоскость задана прямоугольной системой координат Оху, то любая изображенная в нем прямая будет соответствовать уравнению прямой на плоскости. Также имеется связь с направляющим вектором прямой.Этих данных достаточно для того, чтобы произвести составление уравнения прямой, проходящей через две заданные точки.

Рассмотрим на примере решения подобной задачи. Необходимо составить уравнение прямой a , проходящей через две несовпадающие точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) , находящиеся в декартовой системе координат.

В каноническом уравнении прямой на плоскости, имеющего вид x - x 1 a x = y - y 1 a y , задается прямоугольная система координат О х у с прямой, которая пересекается с ней в точке с координатами M 1 (x 1 , y 1) с направляющим вектором a → = (a x , a y) .

Необходимо составить каноническое уравнение прямой a , которая пройдет через две точки с координатами M 1 (x 1 , y 1) и M 2 (x 2 , y 2) .

Прямая а имеет направляющий вектор M 1 M 2 → с координатами (x 2 - x 1 , y 2 - y 1) , так как пересекает точки М 1 и М 2 . Мы получили необходимые данные для того, чтобы преобразовать каноническое уравнение с координатами направляющего вектора M 1 M 2 → = (x 2 - x 1 , y 2 - y 1) и координатами лежащих на них точках M 1 (x 1 , y 1) и M 2 (x 2 , y 2) . Получим уравнение вида x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 или x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 .

Рассмотрим рисунок, приведенный ниже.

Следуя по вычислениям, запишем параметрические уравнения прямой на плоскости, которое проходит через две точки с координатами M 1 (x 1 , y 1) и M 2 (x 2 , y 2) . Получим уравнение вида x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ или x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ .

Рассмотрим подробней на решении нескольких примеров.

Пример 1

Записать уравнение прямой, проходящей через 2 заданные точки с координатами M 1 - 5 , 2 3 , M 2 1 , - 1 6 .

Решение

Каноническим уравнением для прямой, пересекающейся в двух точках с координатами x 1 , y 1 и x 2 , y 2 принимает вид x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . По условию задачи имеем, что x 1 = - 5 , y 1 = 2 3 , x 2 = 1 , y 2 = - 1 6 . Необходимо подставить числовые значения в уравнение x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 . Отсюда получим, что каноническое уравнение примет вид x - (- 5) 1 - (- 5) = y - 2 3 - 1 6 - 2 3 ⇔ x + 5 6 = y - 2 3 - 5 6 .

Ответ: x + 5 6 = y - 2 3 - 5 6 .

При необходимости решения задачи с другим видом уравнения, то для начала можно перейти к каноническому, так как из него проще прийти к любому другому.

Пример 2

Составить общее уравнение прямой, проходящей через точки с координатами M 1 (1 , 1) и M 2 (4 , 2) в системе координат О х у.

Решение

Для начала необходимо записать каноническое уравнение заданной прямой, которая проходит через заданные две точки. Получим уравнение вида x - 1 4 - 1 = y - 1 2 - 1 ⇔ x - 1 3 = y - 1 1 .

Приведем каноническое уравнение к искомому виду, тогда получим:

x - 1 3 = y - 1 1 ⇔ 1 · x - 1 = 3 · y - 1 ⇔ x - 3 y + 2 = 0

Ответ: x - 3 y + 2 = 0 .

Примеры таких заданий были рассмотрены в школьных учебниках на уроках алгебры. Школьные задачи отличались тем, что известным было уравнение прямой с угловым коэффициентом, имеющее вид y = k x + b . Если необходимо найти значение углового коэффициента k и числа b , при которых уравнение y = k x + b определяет линию в системе О х у, которая проходит через точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) , где x 1 ≠ x 2 . Когда x 1 = x 2 , тогда угловой коэффициент принимает значение бесконечности, а прямая М 1 М 2 определена общим неполным уравнением вида x - x 1 = 0 .

Потому как точки М 1 и М 2 находятся на прямой, тогда их координаты удовлетворяют уравнению y 1 = k x 1 + b и y 2 = k x 2 + b . Следует решить систему уравнений y 1 = k x 1 + b y 2 = k x 2 + b относительно k и b .

Для этого найдем k = y 2 - y 1 x 2 - x 1 b = y 1 - y 2 - y 1 x 2 - x 1 · x 1 или k = y 2 - y 1 x 2 - x 1 b = y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

С такими значениями k и b уравнение прямой, проходящее через заданные две точки, принимает следующий вид y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 1 или y = y 2 - y 1 x 2 - x 1 · x + y 2 - y 2 - y 1 x 2 - x 1 · x 2 .

Запомнить сразу такое огромное количество формул не получится. Для этого необходимо учащать количество повторений в решениях задач.

Пример 3

Записать уравнение прямой с угловым коэффициентом, проходящей через точки с координатами M 2 (2 , 1) и y = k x + b .

Решение

Для решения задачи применяем формулу с угловым коэффициентом, имеющую вид y = k x + b . Коэффициенты k и b должны принимать такое значение, чтобы данное уравнение соответствовало прямой, проходящей через две точки с координатами M 1 (- 7 , - 5) и M 2 (2 , 1) .

Точки М 1 и М 2 располагаются на прямой, тогда их координаты должны обращать уравнение y = k x + b верное равенство. Отсюда получаем, что - 5 = k · (- 7) + b и 1 = k · 2 + b . Объединим уравнение в систему - 5 = k · - 7 + b 1 = k · 2 + b и решим.

При подстановке получаем, что

5 = k · - 7 + b 1 = k · 2 + b ⇔ b = - 5 + 7 k 2 k + b = 1 ⇔ b = - 5 + 7 k 2 k - 5 + 7 k = 1 ⇔ ⇔ b = - 5 + 7 k k = 2 3 ⇔ b = - 5 + 7 · 2 3 k = 2 3 ⇔ b = - 1 3 k = 2 3

Теперь значения k = 2 3 и b = - 1 3 подвергаются подстановке в уравнение y = k x + b . Получаем, что искомым уравнением, проходящим через заданные точки, будет уравнение, имеющее вид y = 2 3 x - 1 3 .

Такой способ решения предопределяет траты большого количества времени. Существует способ, при котором задание решается буквально в два действия.

Запишем каноническое уравнение прямой, проходящей через M 2 (2 , 1) и M 1 (- 7 , - 5) , имеющее вид x - (- 7) 2 - (- 7) = y - (- 5) 1 - (- 5) ⇔ x + 7 9 = y + 5 6 .

Теперь переходим к уравнению в угловым коэффициентом. Получаем, что: x + 7 9 = y + 5 6 ⇔ 6 · (x + 7) = 9 · (y + 5) ⇔ y = 2 3 x - 1 3 .

Ответ: y = 2 3 x - 1 3 .

Если в трехмерном пространстве имеется прямоугольная система координат О х у z с двумя заданными несовпадающими точками с координатами M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , проходящая через них прямая M 1 M 2 , необходимо получить уравнение этой прямой.

Имеем, что канонические уравнения вида x - x 1 a x = y - y 1 a y = z - z 1 a z и параметрические вида x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ способны задать линию в системе координат О х у z , проходящую через точки, имеющие координаты (x 1 , y 1 , z 1) с направляющим вектором a → = (a x , a y , a z) .

Прямая M 1 M 2 имеет направляющий вектор вида M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) , где прямая проходит через точку M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) , отсюда каноническое уравнение может быть вида x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 или x - x 2 x 2 - x 1 = y - y 2 y 2 - y 1 = z - z 2 z 2 - z 1 , в свою очередь параметрические x = x 1 + (x 2 - x 1) · λ y = y 1 + (y 2 - y 1) · λ z = z 1 + (z 2 - z 1) · λ или x = x 2 + (x 2 - x 1) · λ y = y 2 + (y 2 - y 1) · λ z = z 2 + (z 2 - z 1) · λ .

Рассмотрим рисунок, на котором изображены 2 заданные точки в пространстве и уравнение прямой.

Пример 4

Написать уравнение прямой, определенной в прямоугольной системе координат О х у z трехмерного пространства, проходящей через заданные две точки с координатами M 1 (2 , - 3 , 0) и M 2 (1 , - 3 , - 5) .

Решение

Необходимо найти каноническое уравнение. Так как речь идет о трехмерном пространстве, значит при прохождении прямой через заданные точки, искомое каноническое уравнение примет вид x - x 1 x 2 - x 1 = y - y 1 y 2 - y 1 = z - z 1 z 2 - z 1 .

По условию имеем, что x 1 = 2 , y 1 = - 3 , z 1 = 0 , x 2 = 1 , y 2 = - 3 , z 2 = - 5 . Отсюда следует, что необходимые уравнения запишутся таким образом:

x - 2 1 - 2 = y - (- 3) - 3 - (- 3) = z - 0 - 5 - 0 ⇔ x - 2 - 1 = y + 3 0 = z - 5

Ответ: x - 2 - 1 = y + 3 0 = z - 5 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


В этой статье получено уравнение прямой, проходящей через две заданные точки в прямоугольной декартовой системе координат на плоскости, а также выведены уравнения прямой, которая проходит через две заданные точки в прямоугольной системе координат в трехмерном пространстве. После изложения теории показаны решения характерных примеров и задач, в которых требуется составить уравнения прямой различного вида, когда известны координаты двух точек этой прямой.

Навигация по странице.

Уравнение прямой, проходящей через две заданные точки на плоскости.

Прежде чем получить уравнение прямой, проходящей через две заданные точки в прямоугольной системе координат на плоскости, вспомним некоторые факты.

Одна из аксиом геометрии гласит, что через две несовпадающие точки на плоскости можно провести единственную прямую. Другими словами, задав две точки на плоскости, мы однозначно определяем прямую линию, которая через эти две точки проходит (при необходимости обращайтесь к разделу способы задания прямой на плоскости).

Пусть на плоскости зафиксирована Oxy . В этой системе координат любой прямой линии соответствует некоторое уравнение прямой на плоскости . С этой же прямой неразрывно связан направляющий вектор прямой . Этих знаний вполне достаточно, чтобы составить уравнение прямой, проходящей через две заданные точки.

Сформулируем условие задачи: составить уравнение прямой a , которая в прямоугольной декартовой системе координат Oxy проходит через две несовпадающие точки и .

Покажем самое простое и универсальное решение этой задачи.

Нам известно, что каноническое уравнение прямой на плоскости вида задает в прямоугольной системе координат Oxy прямую линию, проходящую через точку и имеющую направляющий вектор .

Напишем каноническое уравнение прямой a , проходящей через две заданные точки и .

Очевидно, направляющим вектором прямой a , которая проходит через точки М 1 и М 2 , является вектор , он имеет координаты (при необходимости смотрите статью ). Таким образом, мы имеем все необходимые данные, чтобы написать каноническое уравнение прямой a – координаты ее направляющего вектора и координаты лежащей на ней точки (и ). Оно имеет вид (или ).

Также мы можем записать параметрические уравнения прямой на плоскости , проходящей через две точки и . Они имеют вид или .

Разберем решение примера.

Пример.

Напишите уравнение прямой, которая проходит через две заданные точки .

Решение.

Мы выяснили, что каноническое уравнение прямой, проходящей через две точки с координатами и , имеет вид .

Из условия задачи имеем . Подставим эти данные в уравнение . Получаем .

Ответ:

.

Если нам потребуется не каноническое уравнение прямой и не параметрические уравнения прямой, проходящей через две заданные точки, а уравнение прямой другого вида, то от канонического уравнения прямой всегда можно к нему прийти.

Пример.

Составьте общее уравнение прямой , которая в прямоугольной системе координат Oxy на плоскости проходит через две точки и .

Решение.

Сначала напишем каноническое уравнение прямой, проходящей через две заданные точки. Оно имеет вид . Теперь приведем полученное уравнение к требуемому виду: .

Ответ:

.

На этом можно и закончить с уравнением прямой, проходящей через две заданные точки в прямоугольной системе координат на плоскости. Но хочется напомнить, как мы решали такую задачу в средней школе на уроках алгебры.

В школе нам было известно лишь уравнение прямой с угловым коэффициентом вида . Найдем значение углового коэффициента k и числа b , при которых уравнение определяет в прямоугольной системе координат Oxy на плоскости прямую линию, проходящую через точки и при . (Если же x 1 =x 2 , то угловой коэффициент прямой бесконечен, а прямую М 1 М 2 определяет общее неполное уравнение прямой вида x-x 1 =0 ).

Так как точки М 1 и М 2 лежат на прямой, то координаты этих точек удовлетворяют уравнению прямой , то есть, справедливы равенства и . Решая систему уравнений вида относительно неизвестных переменных k и b , находим или . При этих значениях k и b уравнение прямой, проходящей через две точки и , принимает вид или .

Запоминать эти формулы не имеет смысла, при решении примеров проще повторять указанные действия.

Пример.

Напишите уравнение прямой с угловым коэффициентом, если эта прямая проходит через точки и .

Решение.

В общем случае уравнение прямой с угловым коэффициентом имеет вид . Найдем k и b , при которых уравнение соответствует прямой, проходящей через две точки и .

Так как точки М 1 и М 2 лежат на прямой, то их координаты удовлетворяют уравнению прямой , то есть, верны равенства и . Значения k и b находим как решение системы уравнений (при необходимости обращайтесь к статье ):

Осталось подставить найденные значения и в уравнение . Таким образом, искомое уравнение прямой, проходящей через две точки и , имеет вид .

Колоссальный труд, не так ли?

Намного проще записать каноническое уравнение прямой, проходящей через две точки и , оно имеет вид , и от него перейти к уравнению прямой с угловым коэффициентом: .

Ответ:

Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , и заданы две несовпадающие точки и , через которые проходит прямая M 1 M 2 . Получим уравнения этой прямой.

Нам известно, что канонические уравнения прямой в пространстве вида и параметрические уравнения прямой в пространстве вида задают в прямоугольной системе координат Oxyz прямую линию, которая проходит через точку с координатами и имеет направляющий вектор .

Направляющим вектором прямой M 1 M 2 является вектор , и эта прямая проходит через точку ), тогда канонические уравнения этой прямой имеют вид (или ), а параметрические уравнения - (или ).

.

Если потребуется задать прямую М 1 М 2 с помощью уравнений двух пересекающихся плоскостей , то сначала следует составить канонические уравнения прямой, проходящей через две точки и , и из этих уравнений получить нужные уравнения плоскостей.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные