Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
  • § 219. Движение свободной частицы
  • § 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
  • § 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
  • § 222. Линейный гармонический осциллятор квантовой механике
  • Глава 29
  • § 223. Атом водорода в квантовой механике
  • 2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функцииопределяемые тремя
  • § 225. Спин электрона. Спиновое квантовое число
  • § 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
  • § 227. Принцип Паули. Распределение электронов в атома по состояниям
  • § 228. Периодическая система элементов Менделеева
  • § 229. Рентгеновские спектры
  • § 230. Молекулы: химические связи, понятие об энергетических уровнях
  • § 231. Молекулярные спектры. Комбинационное рассеяние света
  • § 232. Поглощение. Спонтанное и вынужденное излучения
  • § 233. Оптические квантовые генераторы (лазеры) .
  • Глава 30 Элементы квантовой статистики
  • § 234. Квантовая статистика. Фазовое пространство. Функция распределения
  • § 235. Понятие о квантовой статистика Бозе - Эйнштейна и Ферми - Дирака
  • § 236. Вырожденный электронный газ в металлах
  • § 237. Понятие о квантовой теории теплоемкости. Фононы
  • § 238. Выводы квантовой теории электропроводности металлов
  • § 239. Сверхпроводимость. Понятие об эффекте Джозефсона
  • Глава 31 Элементы физики твердого тела
  • § 240. Понятие о зонной теории твердых тел
  • § 241. Металлы, диэлектрики и полупроводники по зонной теории
  • § 242. Собственная проводимость полупроводников
  • § 243. Примесная проводимость полупроводников
  • § 244. Фотопроводимость полупроводников
  • § 245. Люминесценция твердых тел
  • § 246. Контакт двух металлов по зонной теории
  • 1. Контактная разность потенциалов зависит лишь от химического состава и тем­пературы соприкасающихся металлов.
  • § 247.. Термоэлектрические явления и их применение
  • § 248. Выпрямление на контакте металл - полупроводник
  • § 249. Контакт электронного и дырочного полупроводников
  • § 250. Полупроводниковые диоды и триоды (транзисторы)
  • 7 Элементы физики атомного ядра и элементарных частиц
  • Глава 32 Элементы физики атомного ядра
  • § 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
  • § 252. Дефект массы и энергия связи ядра
  • § 253. Спин ядра и его магнитный момент
  • § 254. Ядерные силы. Модели ядра
  • 1) Ядерные силы являются силами притяжения;
  • § 255. Радиоактивное излучение и его виды
  • § 256. Закон радиоактивного распада. Правила смещения
  • § 257. Закономерности а-раепада
  • § 258.-Распад. Нейтрино
  • § 259. Гамма-излучение и его свойства
  • § 260. Резонансное поглощение-излучения (эффект Мeссбауэра**)
  • § 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
  • § 262. Ядерные реакции и их основные типы
  • 1) По роду участвующих в них частиц - реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов,частиц); реакции под действием-квантов;
  • §263. Позитрон.,-Распад. Электронный захват "-
  • § 264. Открытие нейтрона. Ядерные реакции под действием
  • § 265. Реакция деления ядра
  • § 266. Цепная реакция деления
  • § 267. Понятие о ядерной энергетике
  • § 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
  • 1) Протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 к):
  • 2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких тем­ператур (примерно 2 107 к):
  • Глава 33 Элементы физики элементарных частиц
  • § 269. Космическое излучение
  • § 270. Мюоны и их свойства
  • § 271. Мезоны и их свойства
  • § 272. Типы взаимодействий элементарных частиц
  • § 273. Частицы и античастицы
  • § 274. Гипероны. Странность и четность элементарных частиц
  • § 275. Классификация элементарных частиц. Кварки
  • § 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

    Статистическое толкование волн да Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z , t ), так как именно она, или, точнее, величина, определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами x и x + dx . y и y + dy . zuz + dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

    Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

    (217.1)

    где, т - масса частицы,- оператор Лапласа,

    - мнимая единица, V {х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z , t ) - искомая волновая функция частицы.

    Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) произ­водныедолжны быть непрерывны; 3) функциядолжна быть

    интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

    Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записиСледовательно, плоская

    волна де Бройля имеет вид

    (217.2)

    (учтено, чтоВ квантовой механике показатель экспоненты берут со знаком минус,

    но поскольку физический смысл имеет только, то это (см. (217.2)) несущественно. Тогда

    откуда

    Используя взаимосвязь между энергией Е и импульсоми подставляя выражения

    (217.3), получим дифференциальное уравнение

    которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

    Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то

    полная энергия Е складывается из типич еской и потенциальной энергий. Проводя аналогичные

    рассуждения и используя взаимосвязь между Е и р (для данного случаяпридем

    ° к дифференциальному уравнению, совпадающему с (217.1).

    Приведенные рассуждения не должны восприниматься как вывод уравнения Шреди-нгера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

    Уравнение (217.1) является обкщим уравнением Шредингера. Его также называют уравнением Шреднягера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем

    так что

    где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

    откуда после деления на общий множительи соответствующих преобразований

    придем к уравнению, определяющему функцию

    (217.5)

    Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиНо регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствев-нымн. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непре-

    рывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

    § 218. Принцип причинности ■ квантовой механике

    Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно принципу причинно­сти - принципу классического детермизма, по известному состоянию системы в неко­торый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика ос­новывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причи­на, а ее состояние в последующий момент - следствие.

    С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соот­ношением неопределенностей (215.1)), поэтому и делается вывод о том, что в началь­ный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

    Однако никакого нарушения принципа причинности применительно к микрообъ­ектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъ­екта приобретает совершенно иной смысл, чем в классической механике. В кванто­вой механике состояние микрообъекта полностью определяется волновой функцией (х,у, z , t ), квадрат модуля которой(х,у, z , t )\ 2 задает плотность вероятности нахождения частицы в точке с координатами х, у, z .

    В свою очередь, волновая функция(х,у, z , t ) удовлетворяет уравнению Шредин-гера (217.1), содержащему первую производную функции по времени. Это же означает, что задание функции(для момента времениt 0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние

    Есть причина, а состояниев последующий момент - следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функциипредопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшест­вующего состояния, как того требует принцип причинности.

    Введение

    Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

    В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

    Уравнение Шредингера и физический смысл его решений

    Волновое уравнение Шредингера

    Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

    где Н -- оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

    Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

    Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

    Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

    то переход к классическому уравнению Гамильтона--Якоби для функции действия S

    можно получить из (1.3) формальным преобразованием

    Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

    если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

    Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

    описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

    Покажем, что из уравнения (1.1) следует важное равенство

    указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

    Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора, получаем (1.5).

    Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

    где является плотностью вероятности, а вектор

    можно назвать вектором плотности тока вероятности.

    Комплексную волновую функцию всегда можно представить в виде

    где и -- действительные функции времени и координат. Таким образом, плотность вероятности

    а плотность тока вероятности

    Из (1.9) следует, что j = 0 для всех функций, у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций.

    Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и, удовлетворяющими двум связанным уравнениям. Например, если оператор Н -- вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

    при этом плотность вероятности и плотность тока вероятности примут вид

    Волновые функции в импульсном представлении.

    Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии. Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

    Решение. Между функциями и имеются два взаимно обратных соотношения.

    Если соотношение (2.1) использовать в качестве определения и применить к нему операцию, то с учетом определения 3-мерной -функции,

    в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

    тогда для Фурье-образа потенциала будем иметь

    Предполагая, что волновая функция удовлетворяет уравнению Шредингера

    Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

    В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной, а затем эту новую переменную вновь обозначим посредством. Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

    Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как, где.

    Необходимо отметить, что из условия нормировки

    следует равенство

    Это можно показать, подставив в (2.7) выражение (2.1) для функции:

    Если здесь сначала выполнить интегрирование по, то мы без труда получим соотношение (2.8).

    где – оператор Гамильтона – аналог классической функции Гамильтона

    в которой и заменены операторами импульса x , y , z и координаты , , :

    х → = х, y → = y, z → = z,

    (4.2)

    Уравнение Шредингера

    Зависящее от времени уравнение Шредингера:

    где – гамильтониан системы.

    Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

    Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

    Следовательно,

    θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

    Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

    или

    Для трехмерной системы с массой m в поле с потенциалом U():

    −(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

    где Δ – лапласиан.

    Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

    Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

    ψ() = Eψ(). (4.3)

    Это уравнение называют стационарным уравнением Шредингера.

    Так как в стационарном состоянии

    Ψ(,t) = ψ()exp(−iEt/ћ) (4.4)

    и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она ~ |ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

    4.2 . Частица в одномерной прямоугольной яме с бесконечными стенками

    Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

    Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

    где k = (2mE/ћ 2) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

    Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
    Каждому значению энергии E n соответствует волновая функция ψ n (x), которая с учетом условия нормировки

    имеет вид

    (4.10)

    В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
    E < ћ 2 π 2 /(2mL 2). Состояния частицы ψ n в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

    Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

    4.3 . Гармонический осциллятор

    Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

    Допустимые значения полной энергии определяются формулой

    E n = ћω 0 (n + 1/2), n = 0, 1, 2, (4.13)

    В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
    С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

    4.4 . Частица в поле с центральной симметрией

    В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

    где радиальная функция R nl (r) и угловая функция Y lm (θ,φ), называемая сферической, удовлетворяют уравнениям

    2 Y lm (θ,φ) = ћ 2 l (l +1)Y lm (θ,φ) (4.16)
    Y lm (θ,φ) = ћ 2 l (l +1)Y lm (θ,φ)
    (4.17)

    Уравнение (4.16) определяет возможные собственные значения l и собственные функции Y lm (θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции R nl (r), от которых зависит энергия системы (рис. 4.3).
    Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции R nl (r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

    Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
    r 0 = ћ 2 /m e e 2 ≈ 0.529·10 8 cм.

    4.5 . Орбитальный момент количества движения

    Собственные значения L 2 и L z являются решением уравнений

    2 Y lm (θ,φ) = L 2 Y lm (θ,φ) и z Y lm (θ,φ) = L z Y lm (θ,φ).

    Они имеют следующие дискретные значения

    L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
    L z = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

    Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

    Спектроскопические названия орбитальных моментов l

    l = 0 s-состояние
    l = 1 p-состояние
    l = 2 d-состояние
    l = 3 f-состояние
    l = 4 g-состояние
    l = 5 h-состояние
    и. т. д.

    Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Y lm (θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
    Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

    (4.18)

    Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

    Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

    =
    = 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 - 34 Дж·сек.

    Пространственное квантование . Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
    Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
    Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

    4.6 . Спин

    Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

    2 = ћ 2 s(s + 1) (4.19)

    В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение . Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
    Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

    s z ћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ,..., ±1/2ћ или 0.

    Число s z − это квантовое число проекции спина. Максимальная величина s z совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения s z = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

    4.7 . Полный момент количества движения

    Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

    Квадрат полного момента имеет значение:

    2 = ћ 2 j(j + 1).

    Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

    j = l + s, l + s −1,..., |l − s|

    Проекция на выделенную ось J z также принимает дискретные значения:

    J z = ћj z ; = -j, -j + 1,..., j − 1, j.

    Число значений проекции J z равно 2j + 1. Если для и определены единственные значения проекций на ось z l z и s z , то j z также определена однозначно: j z = l z + s z .

    4.8 . Квантовые числа

    Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

    Таблица квантовых чисел

    n Радиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
    J, j Полный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
    L, l Орбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
    m Магнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
    S, s Спиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
    s z Квантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения s z ћ, где s z = ± s, ± (s -1), …, ±1/2 или 0.
    P или π Пространственная четность. Характеризует поведение системы при пространственной инверсии → - (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков - отрицательные.
    I Изоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

    Для обозначения спинового момента часто используют букву J.

    Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

    • Радиальное квантовое число n (1, 2, …, ∞),
    • Орбитальное квантовое число l (0, 1, 2, …),
    • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
    • Спин протона s =1/2.

    Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

    где U 0 , а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, j z , однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
    Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
    Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ -). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
    Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

    Стационарные решения уравнения Шредингера.

    Приложение A.

    Нахождение решения уравнения Шредингера для свободного электрона в виде волнового пакета .

    Запишем уравнение Шредингера для свободного электрона

    После преобразований уравнение Шредингера принимает вид

    (A.2)

    Это уравнение решаем с начальным условием

    (A.3)

    Здесь - волновая функция электрона в начальный момент времени. Ищем решение уравнения (A.2) в виде интеграла Фурье

    (A.4)

    Подставляем (A.4) в (A.2) и получаем

    Решение (A.4) можно теперь записать в следующем виде

    (A.6)

    Используем начальное условие (A.3), и из (A.6) получаем разложение начальной волновой функции электрона в интеграл Фурье.

    (A.7)

    К выражению (A.7) применяем обратное преобразование Фурье

    (A.8)

    Подведем итог проделанным преобразованиям. Итак, если известна волновая функция электрона в начальный момент времени, то после интегрирования (A.8) находим коэффициенты . Затем после подстановки этих коэффициентов в (A.6) и интегрировании, получаем волновую функцию электрона в произвольный момент времени в любой точке пространства.

    Для некоторых распределений интегрирование можно провести в явном виде и получить аналитическое выражение для решения уравнения Шредингера. В качестве начальной волновой функции возьмем распределение Гаусса, модулированное плоской монохроматической волной.

    Здесь - средний импульс электрона. Выбор начальной волновой функции в таком виде позволят получить решение уравнения Шредингера в виде волнового пакета.

    Рассмотрим подробно свойства начальной волновой функции (A.9).

    Во-первых , волновая функция нормирована на единицу.

    (A.10)

    Нормировка (A.10) легко доказывается, если использовать следующий табличный интеграл.

    (A.11)

    Во-вторых , если волновая функция нормирована на единицу, то квадрат модуля волновой функции является плотностью вероятности, нахождения электрона в данной точке пространства.

    Здесь величину будем называть амплитудой волнового пакета в начальный момент времени. Физический смысл амплитуды пакета – это максимальное значение распределения вероятности. На Рис.1 показан график распределения плотности вероятности.

    Распределение плотности вероятности в начальный момент времени.

    Отметим некоторые особенности графика на Рис.1.

    1. Координата – это точка на оси x , в которой распределение вероятности имеет максимальное значение. Поэтому можно сказать, что с наибольшей вероятностью можно обнаружить электрон вблизи точки .

    2. Величина определят отклонение от точки , при котором величина распределения уменьшается в e раз по сравнению с максимальным значением.

    (A.13)

    В этом случае величину называют шириной волнового пакета в начальный момент времени, а величину – полушириной пакета.

    3. Вычислим вероятность нахождения электрона в интервале .

    (A.14)

    Таким образом, вероятность обнаружить электрон в области с центром и полушириной равна 0.843. Эта вероятность близка к единице, поэтому обычно, об области с полушириной говорят, как об области, где находится электрон в начальный момент времени.

    В-третьих , начальная волновая функция не является собственной функцией оператора импульса . Поэтому электрон в состоянии с волновой функцией не имеет определенного импульса, можно говорить только о среднем импульсе электрона. Вычислим средний импульс электрона.

    Поэтому, величина в формуле (A.9) является средним значением импульса электрона. Формула (A.15) легко доказывается, если использовать табличный интеграл (A.11).

    Таким образом, свойства начальной волновой функции разобраны. Теперь подставим функцию в интеграл Фурье (A.8) и найдем коэффициенты .

    В интеграле (A.16) делаем следующую замену переменной интегрирования.

    (A.17)

    В результате интеграл (A.16) принимает следующий вид.

    (A.18)

    В результате получаем следующее выражение для коэффициентов .

    (A.18)

    Подставляем коэффициенты в формулу (A.6), получаем следующее интегральное выражение для волновой функции.

    В интеграле (A.19) делаем следующую замену переменной интегрирования.

    (A.20)

    В результате интеграл (A.19) принимает следующий вид.

    Окончательно получаем формулу для волнового пакета.

    (A.22)

    Легко видеть, что для начального момента времени формула (A.22) переходит в формулу (A.9) для начальной волновой функции. Найдем плотность вероятности для функции (A.22).

    Подставляем волновой пакет (A.22) в формулу (A.23), и в результате получаем следующее выражение.

    (A.24)

    Здесь центр волнового пакета, или максимум распределения плотности вероятности, движется со скоростью , равной следующей величине.

    Полуширина волнового пакета увеличивается со временем, и определятся следующей формулой.

    (A.26)

    Амплитуда волнового пакета уменьшается со временем, и определятся следующей формулой.

    (A.27)

    Таким образом, распределение вероятности для волнового пакета можно записать в следующем виде.

    (A.28)

    На Рис.2. показано распределение вероятности в три последовательных момента времени.

    Распределение вероятности в три последовательных момента времени.

    Приложение B.

    Общие сведения о решении уравнения Шредингера .

    Введение.

    Движение квантовой частицы в общем случае описывается уравнением Шредингера:

    Здесь i – мнимая единица, h =1.0546´10 -34 (Дж×с) - постоянная Планка. Оператор Ĥ называется оператором Гамильтона. Вид оператора Гамильтона зависит от типа взаимодействия электрона с внешними полями.

    Если не учитывать спиновые свойства электрона, например, не рассматривать движение электрона в магнитном поле, то оператор Гамильтона можно представить в виде.

    (B.2)

    Здесь – оператор кинетической энергии:

    , (B.3)

    где m =9.1094´10 -31 (кг) – масса электрона. Потенциальная энергия описывает взаимодействие электрона с внешним электрическим полем.

    В данной лабораторной работе будет рассматриваться одномерное движение электрона вдоль оси x . Уравнение Шредингера в этом случае принимает следующий вид:

    . (B.4)

    Уравнение (B.4) с математической точки зрения является дифференциальным уравнение в частных производных для неизвестной волновой функции Y =Y (x,t). Известно, что такое уравнение имеет определенное решение, если заданы соответствующие начальные и граничные условия. Начальные и граничные условия выбираются исходя из конкретной физической задачи.



    Пусть, например, электрон движется слева направо с некоторым средним импульсом p 0 . Кроме того, в начальный момент времени t=0, электрон локализован в некоторой области пространства x m -d < x < x m +d. Здесь x m – центр области локализации электрона, а d – эффективная полуширина этой области.

    В этом случае начальное условие будет выглядеть следующим образом:

    . (B.5)

    Здесь Y 0 (x) – волновая функция в начальный момент времени. Волновая функция это комплексная функция, поэтому графически удобно представлять не саму волновую функцию, а плотность вероятности.

    Плотность вероятности, нахождения электрона в данном месте в данный момент времени выражается через волновую функцию следующим образом:

    Заметим, что вероятности должна быть нормирована на единицу. Отсюда получаем условие нормировки волновой функции:

    . (B.7)

    Распределение плотности вероятности в начальный момент времени

    , (B.8)

    можно изобразить графически. На Рис.3. показано возможное расположение электрона в начальный момент времени.

    Расположение электрона в момент t=0.

    Из этого рисунка видно, что с наибольшей вероятностью электрон находится в точке x m . Буквой A будем обозначать амплитуду (максимальное значение) распределения вероятности. Из этого рисунка так же видно, как определяется ширина 2d или полуширина d распределения. Если распределение имеет экспоненциальный или гауссов характер, то ширину распределения определяют на уровне в e раз меньшем, чем максимальное значение.

    На Рис.3. показан вектор среднего импульса электрона. Это означает, что электрон движется справа налево, и распределение вероятности так же будет перемещаться справа налево. На Рис.2. показано распределение вероятности в три последовательных момента времени. На Рис.2. видно, что максимум распределения x m (t) перемещается слева направо.

    На Рис.2. можно заметить, что движение электрона справа налево сопровождается деформацией распределения плотности вероятности. Амплитуда A (t) уменьшается, а полуширина d(t) растет. Все указанные детали движения электрона можно получить, если решить уравнение Шредингера (B4) с начальным условием (B.5).

    Резюме . В зависимости от постановки физической задачи может меняться вид уравнения Шредингера. При исследовании тех или иных физических явлений, описываемых уравнением Шредингера, выбираются нужные начальные и граничные условия для нахождения решения уравнения Шредингера.

    Стационарные решения уравнения Шредингера.

    Если электрон движется в постоянном по времени внешнем поле, то его потенциальная энергия не будет зависеть от времени. В этом случае одним из возможных решений уравнения Шредингера (B.4) является решение с разделяющимися переменными по времени t и по координате x.

    Применяем известный в математике прием решения дифференциальных уравнений. Ищем решение уравнения (B.4) в виде:

    . (B.9)

    Подставляем (B.9) в уравнение (B.4) и получаем следующие соотношения:

    . (B.10)

    Здесь E – константа, которой в квантовой механике придается смысл полной энергии электрона. Соотношения (B.10) эквивалентны следующим двум дифференциальным уравнениям:

    . (B.11)

    Первое уравнение в системе (B.11) имеет следующее общее решение:

    Здесь C – произвольная константа. Подставляем (B.12) в выражение (B.9) и получаем решение уравнения Шредингера (B.4) в виде:

    , (B.13)

    где функция y (x) удовлетворяет уравнению.

    (B.14)

    Константа C содержится в функции y (x).

    Решение уравнения Шредингера (B.4) в виде выражения (B.13), называется стационарным решением уравнения Шредингера . Уравнение (B.14) называют стационарным уравнение Шредингера . Функцию y (x) называют волновой функцией , независящей от времени.

    Состояние электрона, которое описывается волной функцией (B.13), называется стационарным состоянием . В квантовой механике утверждается, что в стационарном состоянии электрон обладает определенной энергией E .

    Полученные результаты можно обобщить на уравнение Шредингера (B.1) для трехмерного движения электрона. Если оператор Гамильтона Ĥ не зависит явно от времени, то одним из возможных решений уравнения Шредингера (B.1) является стационарное решение следующего вида:

    , (B.15)

    где волновая функция удовлетворяет стационарному уравнению Шредингера.

    (B.16)

    Заметим, что уравнения (B.14) и (B.16) в квантовой механике имеют еще оно название. Эти уравнения являются уравнениями на собственные функции и собственные значения оператора Гамильтона. Другими словами, решая уравнение (B.16) находят энергии E (собственные значения оператора Гамильтона) и соответствующие им волновые функции (собственные функции оператора Гамильтона).

    Резюме . Стационарные решения уравнения Шредингера являются некоторым классом решений из огромного множества других решений уравнения Шредингера. Стационарные решения существуют, если оператор Гамильтона не зависит явно от времени. В стационарном состоянии электрон имеет определенную энергию. Для нахождения возможных значений энергии надо решить стационарное уравнение Шредингера.

    Волновой пакет.

    Легко видеть, что стационарные решения уравнения Шредингера не описывают движение локализованного электрона, как показано на Рис.1 и Рис.2. Действительно, если взять стационарное решение (B.13) и найти распределение вероятности, то получится функция независящая от времени.

    (B.17)

    В этом нет ничего удивительного, стационарное решение (B.13) является одним из возможных решений дифференциального уравнения в частных производных (B.4).

    Но вот что интересно, в силу линейности уравнения Шредингера (B.4) относительно волновой функции Y (x,t), для решений этого уравнения выполняется принцип суперпозиции. Для стационарных состояний этот принцип утверждает следующее. Любая линейная комбинация стационарных решений (с разными энергиями E ) уравнения Шредингера (B.4) то же является решением уравнения Шредингера (B.4).

    Чтобы дать математическое выражение для принципа суперпозиции, нужно сказать несколько слов об энергетическом спектре электрона. Если решение стационарного уравнения Шредингера (B.14) имеет дискретный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    (B.18)

    где индекс n пробегает, вообще говоря, бесконечный ряд значений n=0,1,2,¼ . В этом случае решение уравнения Шредингера (B.4) можно представить в виде суммы стационарных решений.

    (B.19)

    В квантовой механике доказывается, что собственные функции y n (x) дискретного спектра можно сделать ортонормированной системой функций. Это означает, что выполняется следующее условие нормировки.

    (B.20)

    Здесь d n m – символ Кронекера.

    y n (x) ортонормированная, то коэффициенты C n в сумме (B.19) имеют простой физический смысл. Квадрат модуля от коэффициента C n равен вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E n .

    Самое главное в этом утверждении, что электрон в состоянии с волновой функцией (B.19) не имеет определенной энергии. При измерении энергии, у этого электрона может быть получена любая энергия из набора с вероятностью (B.21).

    Поэтому говорят, что электрон может обладать той или иной энергией с вероятностью, определяемой формулой (B.21).

    Электрон, который находится в стационарном состоянии и имеет определенную энергию, будем называть монохроматическим электроном . Электрон, который не находится в стационарном состоянии, и поэтому не имеет определенной энергии, будем называть немонохроматическим электроном .

    Если решение стационарного уравнения Шредингера (B.14) имеет непрерывный спектр, то это означает, что уравнение (B.14) можно записать в следующем виде:

    , (B.22)

    где энергия E принимает значения на некотором непрерывном интервале [E min , E max ]. В этом случае решение уравнения Шредингера (B.4) можно представить в виде интеграла стационарных решений.

    (B.23)

    Собственные функции непрерывного спектра y E (x) в квантовой механике принято нормировать на d-функцию:

    , (B.24)

    Определение d-функции содержится в следующих интегральных соотношениях:

    Чтобы наглядно представить поведение d-функции, приводят следующее описание этой функции:

    Так вот, если система функций y E (x) нормирована на d-функцию, то квадрат модуля от коэффициента C (E ) в интеграле (B.23) равен плотности вероятности того, что электрон в состоянии с волновой функцией (B.19) имеет энергию E .

    Волновая функция Y(x,t) представленная в виде суммы (B.19) или в виде интеграла (B.23) от стационарных решений уравнения Шредингера, называется волновым пакетом .

    Таким образом, состояние не монохроматического электрона описывается волновым пакетом. Можно сказать еще так, в состояние немонохроматического электрона дают вклад состояния монохроматического электрона со своими весовыми множителями.

    На Рис.1. и Рис.2. изображены волновые пакеты электрона в разные моменты времени.

    Резюме . Состояние немонохроматического электрона описывается волновым пакетом. Немонохроматический электрон не обладает определенной энергией. Волновой пакет можно представить суммой или интегралом волновых функций стационарных состояний со своими энергиями. Вероятность того, что немонохроматический электрон имеет ту или иную энергию из этого набора энергий, определятся вкладом соответствующих стационарных состояний в волновой пакет.

    Свободное движение. Общее решение уравнения Шредингера.

    В зависимости от поля, с которым взаимодействует электрон, решение стационарного уравнения Шредингера (B.14) может иметь разный вид. В данной лабораторной работе рассматривается свободное движение. Поэтому в уравнении (B.14) положим потенциальную энергию равной нулю. В результате получим следующее уравнение:

    , (B.26)

    общее решение этого уравнения имеет следующий вид:

    . (B.27)

    Здесь C 1 и С 2 - две произвольные константы, k имеет смысл волнового числа.

    Теперь с помощью выражения (B.23) запишем общее решение уравнения Шредингера для свободного движения. Подставляем функцию (B.27) в интеграл (B.23). При этом учитываем, что пределы интегрирования по энергии E для свободного движения выбираются от нуля до бесконечности. В результате получаем следующее выражение:

    В этом интеграле удобно перейти от интегрирования по энергии E к интегрированию по волновому числу k . Будем считать, что волновое число может принимать как положительные, так и отрицательные значения. Для удобства введем частоту w, связанную с энергией E , следующим соотношением:

    Преобразуя интеграл (B.28), получаем следующее выражение для волнового пакета:

    . (B.30)

    Интеграл (B.30) дает общее решение уравнения Шредингера (B.4) для свободного движения. Коэффициенты C (k) находятся из начальных условий.

    Возьмем начальное условие (B.5) и подставим туда решение (B.30). В результате получим следующее выражение:

    (B.31)

    Интеграл (B.31) есть не что иное, как разложение начальной волновой функции в интеграл Фурье. Используя обратное преобразование Фурье, находим коэффициенты C (k).

    . (B.32)

    Резюме . Под свободным движением электрона понимается движение в отсутствии внешнего поля в бесконечной области пространства. Если известна волновая функция электрона в начальный момент времени Y 0 (x), то с помощью формул (B.32) и (B.30) можно найти общее решение уравнения Шредингера Y(x,t) для свободного движения электрона.

    Движение микрочастиц в различных силовых полях описывается в рамках нерелятивистской квантовой механики с помощью уравнения Шредингера, из которого вытекают наблюдаемые на опыте волновые свойства частиц. Это уравнение, как и все основные уравнения физики, не выводятся, а постулируется. Его правильность подтверждается согласием результатов расчета с опытом. Волновое уравнение Шредингера имеет следующий общий вид :

    - (ħ 2 / 2m) ∙ ∆ψ + U (x, y, z, t) ∙ ψ = i ∙ ħ ∙ (∂ψ / ∂t)

    где ħ = h / 2π, h = 6,623∙10 -34 Дж ∙ с - постоянная Планка;
    m - масса частицы;
    ∆ - оператор Лапласа (∆ = ∂ 2 / ∂x 2 + ∂ 2 / ∂y 2 + ∂ 2 / ∂z 2);
    ψ = ψ (x, y, z, t) - искомая волновая функция;
    U (x, y, z, t) - потенциальная функция частицы в силовом поле, где она движется;
    i - мнимая единица.

    Это уравнение имеет решение лишь при условиях, накладываемых на волновую функцию:

    1. ψ (x, y, z, t) должна быть конечной, однозначной и непрерывной;
    2. первые производные от нее должны быть непрерывны;
    3. функция | ψ | 2 должна быть интегрируема, что в простейших случаях сводится к условию нормировки вероятностей.
    Для многих физических явлений, происходящих в микромире, уравнение (8.1) можно упростить, исключив зависимость ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т.е. U = U (x, y, z) не зависит явно от времени и имеет смысл потенциальной энергии. Тогда после преобразований можно прийти к уравнению Шредингера для стационарных состояний:

    ∆ψ + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    где ψ = ψ (x, y, z) - волновая функция только координат;
    E - параметр уравнения - полная энергия частицы.

    Для этого уравнения реальный физический смысл имеют лишь такие решения, которые выражаются регулярными функциями ψ (называемыми собственными функциями), имеющими место только при определенных значениях параметра E, называемого собственным значением энергии. Эти значения E могут образовывать как непрерывный, так и дискретный ряд, т.е. как сплошной, так и дискретный спектр энергий.

    Для какой-либо микрочастицы при наличии уравнения Шредингера типа (8.2) задача квантовой механики сводится к решению этого уравнения, т.е. нахождению значений волновых функций ψ = ψ (x, y, z), соответствующих спектру собственных энергией E. Далее находится плотность вероятности | ψ | 2 , определяющая в квантовой механике вероятность нахождения частицы в единичном объеме в окрестности точки с координатами (x, y, z).

    Одним из простейших случаев решения уравнения Шредингера является задача о поведении частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Такая "яма" для частицы, движущейся только вдоль оси Х, описывается потенциальной энергией вида

    где l - ширина "ямы", а энергия отсчитывается от ее дна (рис. 8.1).

    Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ (E - U) ∙ ψ = 0

    В силу того, что "стенки ямы" бесконечно высокие, частица не проникает за пределы "ямы". Это приводит к граничным условиям:

    ψ (0) = ψ (l) = 0

    В пределах "ямы" (0 ≤ x ≤ l) уравнение (8.4) сводится к виду:

    ∂ 2 ψ / ∂x 2 + (2m / ħ 2) ∙ E ∙ ψ = 0

    ∂ 2 ψ / ∂x 2 + (k 2 ∙ ψ) = 0

    где k 2 = (2m ∙ E) / ħ 2


    Решение уравнения (8.7) с учетом граничных условий (8.5) имеет в простейшем случае вид:

    ψ (x) = A ∙ sin (kx)


    где k = (n ∙ π)/ l

    при целочисленных значениях n.

    Из выражений (8.8) и (8.10) следует, что

    E n = (n 2 ∙ π 2 ∙ ħ 2) / (2m ∙ l 2) (n = 1, 2, 3 ...)


    т.е. энергия стационарных состояний зависит от целого числа n (называемого квантовым числом) и имеет определенные дискретные значения, называемые уровнями энергии.

    Следовательно, микрочастица в "потенциальной яме" с бесконечно высокими "стенками" может находится только на определенном энергетическом уровне E n , т.е. в дискретных квантовых состояниях n.

    Подставив выражение (8.10) в (8.9) найдем собственные функции

    ψ n (x) = A ∙ sin (nπ / l) ∙ x


    Постоянная интегрирования А найдется из квантовомеханического (вероятностного) условия нормировки

    которое для данного случая запишется в виде:

    Откуда в результате интегрирования получим А = √ (2 / l) и тогда имеем

    ψ n (x) = (√ (2 / l)) ∙ sin (nπ / l) ∙ x (n = 1, 2, 3 ...)

    Графики функции ψ n (х) не имеют физического смысла, тогда как графики функции | ψ n | 2 показывают распределение плотности вероятности обнаружения частицы на различных расстояниях от "стенок ямы"(рис. 8.1). Как раз эти графики (как и ψ n (х) - для сравнения) изучаются в данной работе и наглядно показывают, что представления о траекториях частицы в квантовой механике несостоятельны.

    Из выражения (8.11) вытекает, что энергетический интервал между двумя соседними уровнями равен

    ∆E n = E n-1 - E n = (π 2 ∙ ħ 2) / (2m ∙ l 2) ∙ (2n + 1)

    Отсюда видно, что для микрочастиц (типа электрона) при больших размерах "ямы" (l≈ 10 -1 м), энергетические уровни располагаются настолько тесно, что образуют практически непрерывный спектр. Такое состояние имеет место, например, для свободных электронов в металле. Если же размеры "ямы" соизмеримы с атомными (l ≈ 10 -10 м), то получается дискретный спектр энергии (линейчатый спектр). Эти виды спектров также могут быть изучены в данной работе для различных микрочастиц.

    Другим случаем поведения микрочастиц (как, впрочем, и микросистем - маятников), часто встречаемым на практике (и рассматриваемым в этой работе), является задача о линейном гармоническом осцилляторе в квантовой механике.

    Как известно, потенциальная энергия одномерного гармонического осциллятора массой m равна

    U (x) = (m ∙ ω 0 2 ∙ x 2)/ 2

    где ω 0 - собственная частота колебаний осциллятора ω 0 = √ (k / m);
    k - коэффициент упругости осциллятора.

    Зависимость (8.17) имеет вид параболы, т.е. "потенциальная яма" в данном случае является параболической (рис. 8.2).



    Квантовый гармонический осциллятор описывается уравнением Шредингера (8.2), учитывающим выражение (8.17) для потенциальной энергии. Решение этого уравнения записывается в виде :

    ψ n (x) = (N n ∙ e -αx2 / 2) ∙ H n (x)

    где N n - постоянный нормирующий множитель, зависящий от целого числа n;
    α = (m ∙ ω 0) / ħ;
    H n (x) - полином степени n, коэффициенты которого вычисляются при помощи рекуррентной формулы при различных целочисленных n.
    В теории дифференциальных уравнений можно доказать, что уравнение Шредингера имеет решение (8.18) лишь для собственных значений энергии:

    E n = (n + (1 / 2)) ∙ ħ ∙ ω 0


    где n = 0, 1, 2, 3... - квантовое число.

    Это значит, что энергия квантового осциллятора может принимать лишь дискретные значения, т.е. квантуется. При n = 0 имеет место E 0 = (ħ ∙ ω 0) / 2, т.е. энергия нулевых колебаний, что является типичным для квантовых систем и представляет собой прямое следствие соотношения неопределенности.

    Как показывает детальное решение уравнения Шредингера для квантового осциллятора , каждому собственному значению энергии при разных n соответствует своя волновая функция, т.к. от n зависит постоянный нормирующий множитель

    а также H n (x) - полином Чебышева-Эрмита степени n.
    При том первые два полинома равны:

    H 0 (x) = 1;
    H 1 (x) = 2x ∙ √ α

    Любой последующий полином связан с нми по следующей рекуррентной формуле:

    H n+1 (x) = 2x ∙ √ α ∙ H n (x) - 2n ∙ H n-1 (x)

    Собственные функции типа (8.18) позволяют найти для квантового осциллятора плотность вероятности нахождения микрочастицы как | ψ n (х) | 2 и исследовать ее поведение на различных уровнях энергии. Решение этой задачи затруднительно ввиду необходимости использования рекуррентной формулы. Эта задача успешно может решаться лишь с использованием ЭВМ, что и делается в настоящей работе.

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные