Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Мощность является важным фактором для оценки эффективности работы электрооборудования в сети энергосистемы. Использование её предельных значений может привести к перегрузкам сети, аварийным ситуациям и выходу оборудования из строя. Для того чтобы обезопасить себя от этих негативных последствий, необходимо понимать, что такое активная реактивная и полная мощность.

Определение мощности

Мощность, которая фактически потребляется или используется в цепи переменного тока, называется активной, в кВт или МВт. Мощность, которая постоянно меняет направление и движется, как по направлению в цепи, так и реагирует сама на себя, называется реактивной, в киловольт (kVAR) или MVAR.

Очевидно, что мощность потребляется только при сопротивлении . Чистый индуктор и чистый конденсатор её не потребляют.

В чистом резистивном контуре ток находится в фазе с приложенным напряжением, тогда как в чистом индуктивном и ёмкостном контуре ток смещён на 90 градусов: если индуктивная нагрузка подключена в сеть, он теряет напряжение на 90 градусов. При подключении ёмкостной нагрузки происходит смещение тока на 90 градусов в обратную сторону.

В первом случае создаётся активная мощность, а во втором - реактивная.

Силовой треугольник

Полная мощность - это векторная сумма активной и реактивной мощности. Элементы полной мощности:

  • Активная, P.
  • Реактивная, Q.
  • Полная, S.

Реактивная мощность не работает, она представлена как мнимая ось векторной диаграммы. Активная мощность работает и является реальной стороной треугольника. Из этого принципа разложения мощностей понятно, в чём измеряется активная мощность. Единицей для всех видов мощности является ватт (W), но это обозначение обычно закрепляется за активной составляющей. Полная мощность условно выражается в ВА.

Единица для Q составляющей выражается как var, что соответствует реактивному вольт-амперу. Она не передаёт никакой чистой энергии нагрузке, тем не менее она выполняет важную функцию в электрических сетях. Математическая связь между ними может быть представлена векторами или выражена с использованием комплексных чисел, S = P + j Q (где j - мнимая единица).

Расчёт энергии и мощности

Средняя мощность P в ваттах (W) равна энергии, потребляемой E в джоулях (J), делённой на период t в секундах (секундах): P (W) = E (J) / Δ t (s).

Когда ток и напряжение находятся на 180 градусов по фазе, PF отрицательный, нагрузка подаёт электроэнергию в источник (примером может служить дом с солнечными батареями на крыше, которые подают питание в энергосистему). Пример:

  • P составляет 700 Вт, а фазовый угол составляет 45, 6;
  • PF равен cos (45, 6) = 0, 700. Тогда S = 700 Вт / cos (45, 6) = 1000 В⋅А.

Отношение активной к полной мощности называется коэффициентом мощности (PF) . Для двух систем, передающих такое же количество активной нагрузки, система с более низким PF будет иметь большие оборотные токи из-за электроэнергии, которая возвращается обратно. Эти большие токи создают большие потери и снижают общую эффективность передачи. Схема с более низким PF будет иметь большую полную нагрузку и более высокие потери для одинакового количества активной нагрузки. PF = 1, 0, когда есть фазный ток. Он равен нулю, когда ток приводит или отстаёт от напряжения на 90 градусов.

Например, PF =0,68 и означает, что только 68 процентов от общего объёма поставленного тока фактически выполняют работу, остальные 32 процента являются реактивными. Производители коммунальных услуг не берут с потребителей плату за её реактивные потери. Однако если в источнике нагрузки клиента есть неэффективность, которая приводит к тому, что PF падает ниже определённого уровня, коммунальные услуги могут взимать плату с клиентов, чтобы покрыть увеличение использования топлива на электростанциях и ухудшение линейных показателей сети.

Характеристики полной S

Формула полной мощности зависит от активной и реактивной мощности и представлена как энергетический треугольник (Теорема Пифагора). S = (Q 2 + P 2) 1 / 2, где:

  • S = полная (измерение в киловольт-ампер, кВА );
  • Q = реактивная (реактивность на киловольтах, kVAR);
  • P = активная (киловатт, кВт).

Она измеряется во вольт-амперах (В⋅А) и зависит от напряжения, умноженного на весь поступающий ток. Это векторная сумма P и Q составляющих, которая подсказывает, как найти полную мощность. Однофазная сеть: V (V) = I (A) x R (Ω).

P (W) = V (V) x I (A) = V 2 (V) / R (Ω) = I 2 (A) x R (Ω).

Трёхфазная сеть:

Напряжение V в вольтах (V) эквивалентно току I в амперах (A), умноженному на импеданс Z в омах (Ω):

V (V) = I (A) x Z (Ω) = (| I | x | Z |) ∠ (θ I + θ Z ).

S (VA) = V (V) x I (A) = (| V | x | I |) ∠ (θ V - θ I ).

Активная P

Это мощность, которая используется для работы , её активная часть, измеряемая во Вт и является силой, потребляемой электрическим сопротивлением системы. P (W) = V (V) x I (A) x cos φ

Реактивная Q

Она не используется для работы в сети . Q измеряется в вольт-амперах (VAR). Увеличение этих показателей приводит к уменьшению коэффициента мощности (PF). Q (VAR) = V (V) x I (A) x sin φ.

Коэффициент эффективности сетей

PF определяется размерами P и S, его вычисляют по теореме Пифагора. Рассматривается косинус угла между напряжением и током (несинусоидальный угол), фазовая диаграмма напряжения или тока от энергетического треугольника. Коэффициент PF равен абсолютному значению косинуса комплексного энергетического фазового угла (φ ): PF = | cosφ | Эффективность энергосистемы зависит от коэффициента PF и для повышения эффективности использования в энергосистеме необходимо его увеличивать.

Ёмкостные и индуктивные нагрузки

Сохранённая энергия в электрическом и магнитном полях в условиях нагрузки, например, от двигателя или конденсатора, вызывает смещение между напряжением и током. Поскольку ток протекает через конденсатор, накапливание заряда вызывает возникновение противоположного напряжения на нём. Это напряжение увеличивается до некоторого максимума, продиктованного структурой конденсатора. В сети с переменным током на конденсаторе постоянно меняется напряжение. Конденсаторы называются источником реактивных потерь и, таким образом, вызывают ведущий PF.

Индукционные машины являются одними из наиболее распространённых типов нагрузок в электроэнергетической системе. Эти машины используют индукторы или большие катушки проволоки для хранения энергии в виде магнитного поля. Когда напряжение сначала проходит через катушку, индуктор сильно сопротивляется этому изменению тока и магнитного поля, что создает задержку времени с максимальным значением. Это приводит к тому, что ток отстаёт от напряжения по фазе.

Индукторы поглощают Q и, следовательно, вызывают запаздывающий PF. Индукционные генераторы могут подавать или поглощать Q и обеспечивать меру управления системными операторами по потоку Q и по напряжению. Поскольку эти устройства оказывают противоположное воздействие на фазовый угол между напряжением и током, их можно использовать для отмены эффектов друг друга. Обычно это принимает форму конденсаторных банков, используемых для противодействия запаздывающим PF, вызванным асинхронными двигателями.

Погашения реактивного влияния в электросетях

Активная реактивная и полная мощность определяет PF главный фактор для оценки эффективности использования электроэнергии в сети энергосистемы. Если PF высокий, то, можно сказать, что более эффективно электроэнергия используется в энергосистеме. Поскольку PF плох или уменьшается, эффективность использования электроэнергии в энергосистеме снижается. Низкий PF или снижение его обусловлены различными причинами. Для повышения PF существуют специальные способы коррекции.

Использование конденсаторов является наилучшим и эффективным способом повышения эффективности сети. Метод, известный как реактивная компенсация, используется для уменьшения кажущегося потока мощности на нагрузку за счёт уменьшения реактивных потерь. Например, для компенсации индуктивной нагрузки шунтирующий конденсатор устанавливается вблизи самой нагрузки. Это позволяет потреблять конденсатором всю Q и не передавать их по линиям передачи.

Эта практика экономит энергию, потому что она уменьшает количество энергии, которое требуется, для выполнения того же объёма работы. Кроме того, она позволяет использовать более эффективные конструкции линий электропередачи с использованием меньших проводников или меньшего количества проводников с разъёмами и оптимизировать конструкцию трансмиссионных вышек.

Чтобы поддерживать напряжение в оптимальном диапазоне и предотвращать явления нестабильности, в оптимальных местах по всей сети энергосистемы устанавливаются различные устройства для фазовой регулировки, а также используются различные методы реактивного управления.

Предложенная система делит традиционный метод на управление напряжением и Q:

  • управление напряжением для регулировки напряжения вторичной шины подстанций;
  • регулирование Q для регулирования напряжения первичной шины.

В этой системе на подстанциях установлены два типа устройств для взаимодействия контроля напряжения и контроля Q.

Управление напряжением и реактивной мощностью

Это два аспекта одного воздействия, которые поддерживают надёжность и облегчают коммерческие транзакции в сетях передачи. На силовой системе переменного тока (AC) напряжение контролируется путём управления производством и поглощением Q. Существует три причины, по которым необходим такой вид управления:

  1. Оборудование энергосистемы предназначено для работы в диапазоне напряжений, обычно в пределах ± 5% от номинального напряжения. При низком напряжении оборудование работает плохо, лампочки обеспечивают меньшую освещённость, асинхронные двигатели могут перегреваться и быть повреждёнными, а некоторые электронные устройства не будут работать вообще. Высокие напряжения могут повредить оборудование и сократить срок его службы.
  2. Q потребляет ресурсы передачи и генерации. Чтобы максимизировать реальную мощность, которая может быть передана через перегруженный интерфейс передачи, потоки Q должны быть минимизированы. Аналогичным образом производство Q может ограничить реальную мощность генератора.
  3. Движущая реактивность в передающей сети несёт реальные потери мощности. Для восполнения этих потерь должны компенсироваться мощность и энергия.

Система передачи является нелинейным потребителем Q в зависимости от загрузки системы. При очень низкой нагрузке система генерирует Q, которая должна поглощаться, а при большой нагрузке система потребляет большое количество Q, которую необходимо заменить. Требования к Q системы также зависят от конфигурации генерации и передачи. Следовательно, системные реактивные требования меняются во времени по мере изменения уровней нагрузки и моделей нагрузки и генерации.

Работа системы имеет три цели управления Q и напряжениями:

  1. Она должна поддерживать достаточное напряжение во всей системе передачи и распределения как для текущих, так и для непредвиденных условий.
  2. Обеспечить минимизацию перегрузки реальных потоков энергии.
  3. Стремиться минимизировать реальные потери мощности.

Объёмная энергетическая система состоит из множества единиц оборудования, любая из которых может быть неисправна. Таким образом, система предназначена для того, чтобы выдерживать выход из строя отдельного оборудования, продолжая работать в интересах потребителей. Вот почему электрическая система требует реальных резервов мощности для реагирования на непредвиденные обстоятельства и поддержания резервов Q.

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.
По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии.
Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.
Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.
Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.
Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.
При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.

По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.

Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.

Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия - это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Расчет реактивной электроэнергии.

Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.

Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.

Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.

Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.

Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.

Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Специфика сети переменного тока приводит к тому, что в фиксированный момент времени синусоиды напряжения и тока на приемнике совпадают только в случае так называемой активной нагрузки, полностью переводящей ток в тепло или механическую работу. Практически это всевозможные электронагревательные приборы, лампы накаливания, в каком-то приближении электродвигатели и электромагниты под нагрузкой и звуковоспроизводящая аппаратура. Ситуация полностью меняется, если нагрузка, не создающая механической работы, обладает большой индуктивностью при малом сопротивлении. Это характерный случай электродвигателя или трансформатора на холостом ходу.

Подключение подобного потребителя к источнику постоянного тока привело бы к , здесь же ничего особенного с сетью не случится, но мгновенный ток будет отставать от мгновенного напряжения примерно на четверть периода. В случае же чисто емкостной нагрузки (если в розетку вставить конденсатор), ток на нем будет, наоборот, на ту же четверть периода опережать напряжение.

Реактивные токи

Практически такое несовпадение тока и напряжения, не производя на приемнике полезной работы, создает в проводах дополнительные, или, как принято их называть, реактивные токи, которые в особо неблагоприятных случаях могут привести к разрушительным последствиям. При меньшей величине это явление все равно требует расходовать излишний металл на более толстую проводку, повышать мощность питающих генераторов и трансформаторов электроэнергии. Поэтому экономически оправдано устранять в сети реактивную мощность всеми возможными способами. При этом следует учитывать суммарную реактивную мощность всей сети, при том, что отдельные элементы могут обладать значительными значениями реактивной мощности.

Реактивная электроэнергия

С количественной стороны влияние реактивной электроэнергии на работу сети оценивается косинусом угла потерь, который равен отношению активной мощности к полной. Полная мощность считается как векторная величина, которая зависит от сдвига фаз между током и напряжением на всех элементах сети. В отличие от активной мощности, которую, как и механическую измеряют в ваттах, полную мощность измеряют в вольт-амперах, так как эта величина присутствует только в электрической цепи. Таким образом, чем ближе косинус угла потерь к единице, тем полнее используется и мощность, вырабатываемая генератором.

Основные пути снижения реактивной мощности - взаимная компенсация сдвигов фаз, создаваемых индуктивными и емкостными приемниками и использование приемников с малым углом потерь.

Главная цель при передаче электроэнергии – повышение эффективности работы сетей. Следовательно, необходимо уменьшение потерь. Основной причиной потерь является реактивная мощность, компенсация которой значительно повышает качество электроэнергии.

Реактивная мощность вызывает ненужный нагрев проводов, перегружаются электроподстанции. Трансформаторная мощность и кабельные сечения вынужденно подвергаются завышениям, сетевое напряжение снижается.

Понятие о реактивной мощности

Для выяснения, что же такое реактивная мощность, надо определить другие возможные виды мощности. При существовании в контуре активной нагрузки (резистора) происходит потребление исключительно активной мощности, полностью расходуемой на энергопреобразование. Значит, можно сформулировать, что такое активная мощность, – та, при которой ток совершает эффективную работу.

На постоянном токе происходит потребление исключительно активной мощности, рассчитываемой соответственно формуле:

Измеряется в ваттах (Вт).

В электроцепях с переменным током при наличии активной и реактивной нагрузки мощностной показатель суммируется из двух составных частей: активной и реактивной мощности.

  1. Емкостная (конденсаторы). Характеризуется фазовым опережением тока по сравнению с напряжением;
  2. Индуктивная (катушки). Характеризуется фазовым отставанием тока по отношению к напряжению.

Если рассмотреть контур с переменным током и подсоединенной активной нагрузкой (обогреватели, чайники, лампочки с накаливающейся спиралью), ток и напряжение будут синфазными, а полная мощность, взятая в определенную временную отсечку, вычисляется путем перемножения показателей напряжения и тока.

Однако когда схема содержит реактивные компоненты, показатели напряжения и тока не будут синфазными, а будут различаться на определенную величину, определяемую углом сдвига «φ». Пользуясь простым языком, говорится, что реактивная нагрузка возвращает столько энергии в электроцепь, сколько потребляет. В результате получится, что для активной мощности потребления показатель будет нулевой. Одновременно по цепи протекает реактивный ток, не выполняющий никакую эффективную работу. Следовательно, потребляется реактивная мощность.

Реактивная мощность – часть энергии, которая позволяет устанавливать электромагнитные поля, требуемые оборудованием переменного тока.

Расчет реактивной мощности ведется по формуле:

Q = U x I x sin φ.

В качестве единицы измерения реактивной мощности служит ВАр (вольтампер реактивный).

Выражение для активной мощности:

P = U x I x cos φ.

Взаимосвязь активной, реактивной и полной мощности для синусоидального тока переменных значений представляется геометрически тремя сторонами прямоугольного треугольника, называемого треугольником мощностей. Электроцепи переменного тока потребляют две разновидности энергии: активную мощность и реактивную. Кроме того, значение активной мощности никогда не является отрицательным, тогда как для реактивной энергии возможна либо положительная величина (при индуктивной нагрузке), либо отрицательная (при емкостной нагрузке).

Важно! Из треугольника мощностей видно, что всегда полезно снизить реактивную составляющую, чтобы повысить эффективность системы.

Полная мощность не находится как алгебраическая сумма активного и реактивного мощностного значения, это векторная сумма P и Q. Ее количественное значение вычисляется извлечением квадратного корня из суммы квадратов мощностных показателей: активного и реактивного. Измеряться полная мощность может в ВА (вольтампер) или производных от него: кВА, мВА.

Чтобы была рассчитана полная мощность, необходимо знать разность фаз между синусоидальными значениям U и I.

Коэффициент мощности

Пользуясь геометрически представленной векторной картиной, можно найти отношение сторон треугольника, соответствующих полезной и полной мощности, что будет равно косинусу фи или мощностному коэффициенту:

Данный коэффициент находит эффективность работы сети.

Количество потребляемых ватт – то же самое, что и количество потребляемых вольтампер при мощностном коэффициенте, равном 1 или 100%.

Важно! Полная мощность тем ближе к показателю активной, чем больше cos φ, или чем меньше угол сдвига синусоидальных величин тока и напряжения.

Если, к примеру, имеется катушка, для которой:

  • Р = 80 Вт;
  • Q = 130 ВАр;
  • тогда S = 152,6 BA как среднеквадратичный показатель;
  • cos φ = P/S = 0,52 или 52%

Можно сказать, что катушка требует 130 ВАр полной мощности для выполнения полезной работы 80 Вт.

Коррекция cos φ

Для коррекции cos φ применяется тот факт, что при емкостной и индуктивной нагрузке вектора реактивной энергии располагаются в противофазе. Так как большинство нагрузок является индуктивными, подключив емкость, можно добиться увеличения cos φ.

Главные потребители реактивной энергии:

  1. Трансформаторы. Представляют собой обмотки, имеющие индуктивную связь и посредством магнитных полей преобразуюшие токи и напряжения. Эти аппараты являются основным элементом электросетей, передающих электроэнергию. Особенно увеличиваются потери при работе на холостом ходу и при низкой нагрузке. Широко используются трансформаторы в производстве и в быту;
  2. Индукционные печи, в которых расплавляются металлы путем создания в них вихревых токов;
  3. Асинхронные двигатели. Крупнейший потребитель реактивной энергии. Вращающий момент в них создается посредством переменного магнитного поля статора;
  4. Преобразователи электроэнергии, такие как силовые выпрямители, используемые для питания контактной сети железнодорожного транспорта и другие.

Конденсаторные батареи подсоединяются на электроподстанциях для того, чтобы контролировать напряжение в пределах установленных уровней. Нагрузка меняется в течение дня с утренними и вечерними пиками, а также на протяжении недели, снижаясь в выходные, что изменяет показатели напряжения. Подключением и отключением конденсаторов варьируется его уровень. Это делается от руки и с помощью автоматики.

Как и где измеряют cos φ

Реактивная мощность проверяется по изменению cos φ специальным прибором – фазометром. Его шкала проградуирована в количественных значениях cos φ от нуля до единицы в индуктивном и емкостном секторе. Полностью скомпенсировать негативное влияние индуктивности не удастся, но возможно приближение к желаемому показателю – 0,95 в индуктивной зоне.

Фазометры применяются при работе с установками, способными повлиять на режим работы электросети через регулирование cos φ.

  1. Так как при финансовых расчетах за потребленную энергию учитывается и ее реактивная составляющая, то на производствах устанавливаются автоматические компенсаторы на конденсаторах, емкость которых может меняться. В сетях, как правило, используются статические конденсаторы;
  2. При регулировании cos φ у синхронных генераторов путем изменения возбуждающего тока необходимо его отслеживать визуально в ручных рабочих режимах;
  3. Синхронные компенсаторы, представляющие собой синхронные двигатели, работающие без нагрузки, в режиме перевозбуждения выдают в сеть энергию, которая компенсирует индуктивную составляющую. Для регулирования возбуждающего тока наблюдают за показаниями cos φ по фазометру.

Коррекция коэффициента мощности – одна из эффективнейших инвестиций для сокращения затрат на электроэнергию. Одновременно улучшается качество получаемой энергии.

Видео

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные