Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально. Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на . Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

Измеритель солнечного излучения (люксметр)

В помощь техническим и научным сотрудникам разработано немало измерительных приборов, призванных обеспечить точность, удобство и эффективность работы. Вместе с тем, для большинства людей названия этих приборов, а тем более принцип их работы, зачастую незнакомы. В этой статье мы в краткой форме раскроем предназначение самых распространенных измерительных приборов. Информацией и изображениями приборов с нами поделился сайт одного из поставщиков измерительных приборов .

Анализатор спектра - это измерительный прибор, который служит для наблюдения и измерения относительного распределения энергии электрических (электромагнитных) колебаний в полосе частот.

Анемометр – прибор, предназначенный для измерения скорости, объема воздушного потока в помещении. Анемометр применяют для санитарно-гигиенического анализа территорий.

Балометр – измерительный прибор для прямого измерения объёмного расхода воздуха на крупных приточных и вытяжных вентиляционных решетках.

Вольтметр - это прибор, которым измеряют напряжение.

Газоанализатор - измерительный прибор для определения качественного и количественного состава смесей газов. Газоанализаторы бывают ручного действия или автоматические. Примеры газоанализаторов: течеискатель фреонов, течеискатель углеводородного топлива, анализатор сажевого числа, анализатор дымовых газов, кислородомер, водородомер.

Гигрометр – это измерительный прибор, который служит для измерения и контроля влажности воздуха.

Дальномер – прибор, измеряющий расстояние. Дальномер позволяет также вычислять площадь и объем объекта.

Дозиметр – прибор, предназначенный для обнаружения и измерения радиоактивных излучений.

Измеритель RLC – радиоизмерительный прибор, используемый для определения полной проводимости электрической цепи и параметров полного сопротивления. RLC в названии является абревиатурой схемных названий элементов, параметры которых могут измеряться этим прибором: R - Сопротивление, С - Ёмкость, L - Индуктивность.

Измеритель мощности – прибор, который используется для измерения мощности электромагнитных колебаний генераторов, усилителей, радиопередатчиков и других устройств, работающих в высокочастотном, СВЧ и оптическом диапазонах. Виды измерителей: измерители поглощаемой мощности и измерители проходящей мощности.

Измеритель нелинейных искажений – прибор, предназначенный для измерения коэффициента нелинейных искажений (коэффициента гармоник) сигналов в радиотехнических устройствах.

Калибратор – специальная эталонная мера, которую используют для поверки, калибровки или градуировки измерительных приборов.

Омметр, или измеритель сопротивления – это прибор, используемый для измерения сопротивления электрическому току в омах. Разновидности омметров в зависимости от чувствительности: мегаомметры, гигаомметры, тераомметры, миллиомметры, микроомметры.

Токовые клещи – инструмент, который предназначен для измерения величины протекающего тока в проводнике. Токовые клещи позволяют проводить измерения без разрыва электрической цепи и без нарушения ее работы.

Толщиномер - это прибор, при помощи которого можно с высокой точностью и без нарушения целостности покрытия, измерить его толщину на металлической поверхности (например, слоя краски или лака, слоя ржавчины, грунтовки, или любого другого неметаллического покрытия, нанесенного на металлическую поверхность).

Люксметр – это прибор для измерения степени освещенности в видимой области спектра. Измерители освещения представляют собой цифровые, высокочувствительные приборы, такие как люксметр, яркомер, пульсметр, УФ-радиометр.

Манометр – прибор, измеряющий давление жидкостей и газов. Виды манометров: общетехнические, коррозионностойкие, напоромеры, электроконтактные.

Мультиметр – это портативный вольтметр, который выполняет одновременно несколько функций. Мультиметр предназначен для измерения постоянного и переменного напряжения, силы тока, сопротивления, частоты, температуры, а также позволяет осуществлять прозвонку цепи и тестирование диодов.

Осциллограф – это измерительный прибор, позволяющий осуществлять наблюдение и запись, измерения амплитудных и временны́х параметров электрического сигнала. Виды осциллографов: аналоговые и цифровые, портативные и настольные

Пирометр - это прибор для бесконтактного измерения температуры объекта. Принцип действия пирометра основан на измерении мощности теплового излучения объекта измерения в диапазоне инфракрасного излучения и видимого света. От оптического разрешения зависит точность измерения температуры на расстоянии.

Тахометр – это прибор, позволяющий измерять скорость вращения и количество оборотов вращающихся механизмов. Виды тахометров: контактные и бесконтактные.

Тепловизор – это устройство, предназначенное для наблюдения нагретых объектов по их собственному тепловому излучению. Тепловизор позволяет преобразовывать инфракрасное излучение в электрические сигналы, которые затем в свою очередь после усиления и автоматической обработки преобразуются в видимое изображение объектов.

Термогигрометр – это измерительный прибор, выполняющий одновременно функции измерения температуры и влажности.

Трассодефектоискатель – это универсальный измерительный прибор, который позволяет на местности определять местоположение и направление кабельных линий и металлических трубопроводов, а также определять место и характер их повреждения.

pH-метр – это измерительный прибор, предназначенный для измерения водородного показателя (показателя pH).

Частотомер – измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала.

Шумомер – прибор для измерения звуковых колебаний.

Таблица: Единицы измерения и обозначения некоторых физических величин.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter

В это трудно поверить, но высоту дерева определили при помощи очень длинной измерительной ленты; однако существуют и намного более простые методы определения высоты деревьев. Хотя эти методы не всегда позволяют измерить высоту с точностью до сантиметра (или дюйма), они довольно надежны, и с их помощью можно измерять любые высокие предметы, такие как телеграфные столбы, здания, и даже волшебное дерево, выросшее из бобового зернышка: измерению поддается любой объект, покуда видна его вершина.

Шаги

Использование листа бумаги

    Этот способ позволяет найти высоту дерева, не прибегая к математическим вычислениям. Вам понадобится всего лишь лист бумаги и измерительная рулетка. Не потребуется никаких вычислений; однако, если вы хотите узнать, как работает данный метод, вам потребуется небольшое знакомство с основами тригонометрии.

    • В разделе "Использование клинометра или теодолита" приведены все математические вычисления и пояснения, однако они не обязательны для нахождения высоты дерева данным методом.
  1. Сложите лист бумаги по диагонали так, чтобы получился треугольник. Если лист не квадратный, а прямоугольный, необходимо сделать из него квадрат. Согните лист бумаги по углу, совместив два соседних края и получив таким образом треугольник, после чего отрежьте лишний край, выступающий из-под него. В результате у вас получится необходимый треугольник.

    • Треугольник будет иметь один прямой (90 градусов) угол и два острых угла по 45 градусов.
  2. Поднесите треугольник к одному глазу. Держите лист вертикально, чтобы прямой угол (90º) помещался внизу и был направлен от вас. Одна из коротких сторон (катет) должна располагаться горизонтально (параллельно земле), вторая – вертикально (снизу вверх). Разместите треугольник так, чтобы, подняв глаза кверху, вы могли смотреть вдоль его длинной стороны.

    • Длинная сторона прямоугольного треугольника, вдоль которой направлен ваш взгляд, называется гипотенузой.
  3. Отдаляйтесь от дерева до тех пор, пока не увидите, что его верхушка совпадает с вершиной треугольника (его верхним острым углом). Закройте один глаз, глядя вторым вдоль длинной стороны треугольника, пока над ним не возникнет верхушка дерева. Добейтесь, чтобы ваш взгляд, направленный вдоль длинной стороны треугольника, падал на самую вершину дерева.

    Отметьте соответствующее место на земле и измерьте расстояние от него до основания дерева. Это и будет почти полной высотой дерева. К полученной величине следует прибавить ваш рост, поскольку вы смотрели на дерево не с самой земли, а с высоты ваших глаз. Теперь вы нашли относительно точную высоту дерева!

    • Принцип, на котором основан данный метод, подробно изложен ниже в разделе "Использование клинометра или теодолита". Настоящий метод не требует каких-либо вычислений, поскольку в нем используется тот простой факт, что тангенс угла 45º градусов (именно такие острые углы в нашем треугольнике из бумаги) равен 1. Таким образом, можно записать следующее равенство: (высота дерева) / (расстояние от дерева) = 1. Умножив обе части равенства на (расстояние от дерева), получаем: высота дерева = расстояние от дерева.

Использование карандаша (необходим помощник)

  1. Этот метод можно использовать в качестве альтернативы предыдущему (сравнение теней). Хотя настоящий метод менее точен, его можно использовать в тех случаях, когда невозможно найти высоту дерева посредством сравнения длины теней, например, в пасмурный день. К тому же, если у вас есть измерительная рулетка, вы сможете обойтись без математических вычислений. В противном случае, если вы не найдете рулетку, потребуются некоторые простые вычисления.

    Встаньте достаточно далеко от дерева так, чтобы видеть его целиком, от основания до вершины, не наклоняя и не подымая при этом голову. Для большей точности измерений ваши ступни должны быть вровень с основанием дерева, не выше и не ниже его. Встаньте так, чтобы ничто не перекрывало и не загораживало от вас дерево.

    Возьмите в руку карандаш и вытяните его перед собой. Вместо карандаша можно использовать другой небольшой прямой предмет, например, палочку либо линейку. Взяв карандаш в руку, выпрямите ее таким образом, чтобы карандаш находился прямо перед вами (между вами и деревом).

    Закройте один глаз и пошевелите карандашом, добившись того, чтобы его верхушка совместилась с вершиной дерева. При этом лучше держать карандаш заточенным концом кверху. Необходимо, чтобы верхний край карандаша заслонил от вас вершину дерева, в то время как вы смотрите на дерево “сквозь” карандаш.

    Подвигайте большим пальцем вдоль карандаша, добившись того, чтобы кончик пальца совпал с основанием дерева. Держа карандаш так, чтобы его верхний конец был совмещен с вершиной дерева (смотрите шаг 3), переместите большой палец вдоль карандаша в то место, где видно основание дерева, выходящее из земли (как и ранее, глядя при этом одним глазом “сквозь” карандаш на дерево). Теперь карандаш "закрывает" полную высоту дерева, от его основания до вершины.

    Поверните руку так, чтобы карандаш расположился горизонтально (вдоль земной поверхности). При этом держите руку вытянутой перед собой и следите, чтобы большой палец по-прежнему указывал на основание дерева.

    Попросите своего помощника встать так, чтобы вы могли видеть его или ее “на” кончике карандаша. То есть ваш друг должен встать таким образом, чтобы его ступни “совпали” с верхушкой карандаша. При этом помощнику следует расположиться на том же расстоянии от вас, что и дерево, не ближе и не дальше. Вы и ваш помощник будете удалены друг от друга на некоторое расстояние (зависящее от высоты дерева), поэтому можете общаться с ним посредством жестов (пользуясь второй рукой, в которой нет карандаша), показывая, куда ему двигаться (дальше или ближе, вправо или влево).

    Если у вас есть при себе рулетка, измерьте расстояние между вашим помощником и деревом. Попросите друга оставаться на месте, либо отметьте это место веткой или камешком. Затем измерьте рулеткой расстояние от этого места до основания дерева. Это расстояние будет равняться высоте дерева.

    Если у вас нет под рукой измерительной рулетки, отметьте на карандаше высоту вашего помощника и высоту дерева. Нанесите царапину либо другую отметку на карандаш в том месте, где располагался ваш большой палец, зафиксировав тем самым высоту дерева с занятой вами точки обзора. Затем так же, как ранее с деревом, переместите карандаш таким образом, чтобы он частично заслонил вашего помощника, совместив верхушку карандаша с головой помощника, а лежащий на карандаше большой палец – с его ступнями. Вновь отметьте положение большого пальца на карандаше.

  2. Рассчитайте высоту дерева, найдя измерительную рулетку. Для этого потребуется измерить расстояние между кончиком карандаша и сделанными на нем отметками, а также рост вашего помощника; это можно проделать и дома, не возвращаясь к дереву. Отмасштабируйте отрезки на карандаше в соответствии с ростом вашего помощника. Например, если отметка, означающая рост вашего друга, отстоит от кончика карандаша на 5 сантиметров (2 дюйма), а отметка, соответствующая высоте дерева – на 17,5 сантиметров (7 дюймов), тогда дерево в 3,5 раза выше вашего помощника, поскольку 17,5 см / 5 см = 3,5 (7 дюймов / 2 дюйма = 3,5). Допустим, рост вашего друга составляет 180 сантиметров (6 футов), тогда высота дерева равна 180 см x 3,5 = 630 см (6 x 3,5 = 21 футов).

    • Примечание : если у вас есть при себе измерительная рулетка, когда вы находитесь возле дерева, нет необходимости производить какие-либо вычисления. Прочитайте внимательно приведенный выше шаг "если у вас есть при себе рулетка".

Использование клинометра или теодолита

  1. Данный метод позволяет получить более точные результаты. Хотя приведенные выше методы довольно надежны, при помощи немного более развернутых вычислений и специальных инструментов можно получить более точные результаты. Это не так сложно, как кажется на первый взгляд: понадобится лишь калькулятор с функцией вычисления тангенса, а также простой пластмассовый транспортир, соломинка и нить, при помощи которых вы сможете сделать клинометр самостоятельно. Клинометр, или уклономер, позволяет позволяет измерять наклон объектов, а в нашем случае – угол между вами и вершиной дерева. С этой целью используют и более сложный и точный инструмент, называемый теодолитом, в конструкцию которого входит телескоп либо лазер.

    • В методе “Использование листа бумаги” в качестве клинометра выступает бумажный треугольник. Настоящий метод, помимо большей точности, позволяет определить высоту дерева с любого расстояния вместо того, чтобы подходить к дереву или удаляться от него, добиваясь совмещения листа бумаги с деревом.
  2. Измерьте расстояние до точки наблюдения. Встаньте спиной к дереву и отойдите от него на место, находящееся вровень с его основанием, откуда хорошо видна вершина дерева. При этом идите вдоль прямой линии, измеряя рулеткой расстояние, пройденное от дерева. Расстояние от дерева может быть произвольным, однако для данного метода лучше всего, если оно составит 1-1,5 высоты дерева.

    Теперь вы знаете высоту дерева. Поскольку клинометр или теодолит располагался не на земле, а на уровне ваших глаз, для нахождения полной высоты дерева к вычисленной ранее величине следует прибавить ваш рост. Для получения более точных результатов можете измерить расстояние от своих ступней до глаз и прибавить его, а не полный рост от ступней до макушки.

    • Если вы пользуетесь стационарным теодолитом, следует прибавить не ваш рост, а расстояние от окуляра теодолита до земли.
  • Многие деревья не растут строго вертикально, их стволы бывают наклонены. Используя метод угла подъема, вы можете приспособить его к наклонным деревьям, измеряя расстояние между вами и точкой на земле, находящейся строго под вершиной дерева (а не между вами и основанием дерева).
  • Вы можете повысить точность расчетов метода карандаша и метода угла подъема, если сделаете несколько замеров с разных точек вокруг дерева.
  • Это может быть веселым занятием для школьников с 4 по 7 классы.
  • Для более точных расчетов при использовании метода тени вместо роста человека вы можете взять что-то, длину чего вы точно знаете (например, метровую линейку либо другой прямой длинный предмет).
  • Будьте внимательны с единицами измерения (умножайте метры на метры или сантиметры на сантиметры).
  • Вы можете легко сделать простейший клинометр с помощью транспортира. Инструкции вы найдете в этой статье .

Предупреждения

  • Перечисленные методы не работают, если дерево растет на склоне. В таких случаях специалисты используют электронные теодолиты, которые, как правило, довольно дороги.
  • Хотя методы угла подъема при правильном использовании дадут вам результат с точностью до полуметра либо метра, в них можно легко ошибиться, особенно если дерево наклонено или растет на склоне. Если вам необходима высокая точность, обратитесь к услугам автовышки.

При производстве строительных работ или мелкого ремонта часто требуются измерительные инструменты. Обычно ими являются линейки или рулетки. Но при измерении диаметра трубы или глубины отверстия эти инструменты не подходят. Для таких целей служат более точные измерительные приборы – штангенциркули.

Такой прибор является универсальным. С его помощью можно измерить внешние и внутренние размеры деталей. Штангенциркули приобрели широкую популярность в быту, так как он имеет простое устройство и удобен в пользовании. С помощью такого прибора можно быстро и легко произвести измерение с высокой точностью.

Устройство штангенциркуля

1 — Губки для внутренних измерений
2 — Губки для наружных измерений
3 — Зажимной винт
4 — Подвижная рамка
5 — Нониус
6 — Штанга
7 — Шкала штанги
8 — Глубинометр

У всех аналогичных штангенциркулю инструментов имеется измерительная штанга, благодаря которой прибор получил такое название. На штанге имеется основная шкала, которая необходима при измерении в первую очередь.

Подвижная рамка с нанесенной шкалой имеет возможность перемещаться по штанге. Шкала на штанге называется нониусом, который имеет более точную разметку по долям делений. Это обеспечивает повышенную точность измерений. Степень точности штангенциркуля в зависимости от исполнения может достигать сотых долей миллиметра.

Штангенциркули имеют губки двух видов:

Также имеется еще один измерительный элемент прибора, который называется глубиномером. С помощью него можно измерить глубину отверстий и другие размеры.

Цифровые штангенциркули устроены аналогичным образом. Однако вместо нониуса применяется цифровая шкала, повышающая удобство применения и точность измерения прибором.

1 — Зажимной винт
2 — Батарейка
3 — Ролик изменения длинны
4 — Обнуление
5 — Вкл/Выкл
6 — Переключение мм/дюймы

Как и все измерительные приборы, цифровые приборы оснащены шкалой с ценой деления 0,01 мм. Допустимой погрешностью считается отклонение результата измерения в меньшую или большую сторону на 10%. В промышленности все измерительные инструменты каждые полгода подвергаются метрологическому контролю.

В торговой сети продаются штангенциркули, упакованные в футляре. При приобретении инструмента рекомендуется осмотреть измерительные губки. Они должны быть ровными, и при их сжатии не должно быть просвета.

Шкала нониуса при сомкнутых губках должна находиться в нулевом положении. Линии отметки делений шкалы по нониусу должны быть нанесены четко. В комплект прибора должен входить паспорт с отметкой о произведенной поверке на точность.

Виды и особенности

Основные виды штангенциркулей:

Существует несколько подвидов различных штангенциркулей в зависимости от размеров, конструктивных особенностей и принципа действия.
ШЦ- I

Это наиболее простая и популярная модель прибора, которая широко используется в промышленном производстве. Его называют «колумбиком» по названию фирмы изготовителя, которая производила инструмент в военное время (Columbus).

Прибором можно измерить внутренние, наружные размеры, глубину. Интервал измерений составляет от 0 до 150 мм. Точность измерений достигает 0,02 мм.

ШЦЦ- I

Эта цифровая модель измерительного инструмента имеет аналогичную конструкцию классического штангенциркуля. Интервал измерений 0-150 мм. Одним из его преимуществ можно назвать более высокую точность при измерении за счет наличия цифрового индикатора.

Удобство использования такого цифрового прибора заключается в том, что в любой точке измерения можно обнулить индикатор. Также легко одной кнопкой можно переключать метрическую систему на дюймовую.

При покупке цифровой модели необходимо обратить внимание на наличие нулевых показаний при сведенных губках, а также при затянутом стопорном винте цифры на дисплее не должны прыгать.

ШЦК- I

В такой конструкции штангенциркуля присутствует поворотный индикатор с круглой шкалой, цена деления которой 0,02 мм. Такими штангенциркулями удобно пользоваться при частых измерениях на производстве. Стрелка индикатора хорошо видна для быстрого контроля результата, не имеет скачков, в отличие от цифровых моделей. Этим прибором особенно удобно пользоваться в отделе технического контроля для замеров аналогичных типовых размеров.

ШЦ- II

Такие линейки используются для измерения внутренних и наружных размеров, а также для работ по разметке деталей перед обработкой. Поэтому на их губках имеются насадки, выполненные из твердого сплава для защиты их от быстрого износа. Интервал измерения серии приборов ШЦ-II находится в пределах 0-250 мм и точностью измерения 0,02 мм.

ШЦ- III и ШЦЦ- III

Большие детали измеряются чаще всего такой моделью инструмента, так как точность измерений у него выше остальных моделей и составляет 0,02 мм для механических приборов, и 0,01 мм для цифровых.

Наибольший размер для измерения составляет 500 мм. Губки в таких моделях направлены вниз, и могут иметь длину до 300 мм. Это дает возможность производить измерения деталей в широких пределах.

Штангенциркули специального назначения

Коротко рассмотрим несколько специализированных моделей штангенциркулей, предназначенных для специальных видов работ. В торговой сети такие приборы появляются довольно редко.

  • ШЦЦТ – применяется для замеров труб, его называют трубным штангенциркулем.
  • ШЦЦВ — для измерения внутренних размеров, имеет цифровой дисплей.
  • ШЦЦН – аналогичная предыдущему прибору, служит для измерения наружных размеров.
  • ШЦЦУ — универсальный цифровой измеритель, в комплект входит комплект насадок для труднодоступных измерений: межцентровых расстояний, стенок труб, наружных и внутренних размеров и т.д.
  • ШЦЦД – прибор для измерения толщины тормозных дисков и деталей с наличием различных выступов.
  • ШЦЦП — штангенциркули применяются для измерения глубины протектора шин автомобилей.
  • ШЦЦМ – штангенциркули, предназначенны специально для замеров межцентровых расстояний.
Правила пользования штангенциркулем
  • Проверить инструмент. Для этого губки штангенциркуля свести вместе и проверить точность их смыкания на наличие между ними просвета.
  • Инструмент взять в правую руку, а измеряемую деталь в левую руку.
  • Для измерения внешнего размера детали, необходимо развести нижние губки инструмента и расположить между ними контролируемую деталь. При этом следует быть осторожным, так как края губок острые, и можно получить травму при неаккуратном обращении с инструментом.
  • Губки штангенциркуля сжать до соприкосновения с деталью. Если материал изготовления детали имеет мягкую структуру, то сильное сжатие губок приведет к неточности измерения. Поэтому губки необходимо сдавливать осторожно, только до соприкосновения с поверхностью детали. Для передвижения рамки штангенциркуля используют большой палец руки.
  • Проверить расположение губок относительно детали. Они должны находиться на равном расстоянии от краев детали, наличие перекосов инструмента не допускается.
  • Зафиксировать винт, предназначенный для зажима подвижной рамки. Это позволяет сохранить положение рамки для точных результатов измерения. Затягивать винт целесообразно большим и указательным пальцем, одновременно этой же рукой удерживать инструмент в одном положении, чтобы не сдвигать его для обеспечения точности измерения.
  • Отложить деталь в сторону, а зафиксированный штангенциркуль без детали взять для снятия результатов замера.
  • Этап снятия показаний инструмента является очень важным, так как неточность при измерении может привести к серьезным последствиям на производстве.

Штангенциркуль расположить прямо перед глазами.


1 — Шкала штанги
2 — 21 деление
3 — Шкала нониуса

— На рисунке изображен порядок измерения. Слева показаны губки для внешних замеров с измеряемой деталью, а справа изображены шкалы: нониусная и основная. Их деления и определят результат измерения.
— Сначала необходимо подсчитать количество целых миллиметров. Для этого нужно найти на шкале штанги деление, которое находится наиболее близко к нулю нониуса. Это деление указано первой верхней стрелкой красного цвета. В нашем случае эта величина равна 13 мм. Это значение необходимо запомнить, либо записать.
— Далее нужно вычислить доли миллиметра. Для этого на шкале нониуса надо найти деление, совпадающее с делением на шкале штанги. Это деление на рисунке показано второй красной стрелкой.
— Далее необходимо определить номер деления по порядку, для нашего случая получается 21.
— Затем нужно это число умножить на цену деления шкалы нониуса. В нашем примере цена деления 0,01 мм.
— Теперь необходимо подсчитать точную величину измерения, определенного штангенциркулем. Для этого нужно сложить целое число с долями миллиметра. В результате получается 13,21 мм.

  • По окончании работы с инструментом очистить его, ослабить винт, сомкнуть губки и положить в чехол. Если инструмент будет долго храниться, то рекомендуется обработать его антикоррозийным раствором.

При наличии циферблатного или цифрового штангенциркуля процесс измерения становится намного проще, так как рассчитывать ничего не нужно, готовый результат будет виден на дисплее или на циферблате.

На заре развития знаний об электричестве, достаточно было оперировать такими понятиями, как напряжение, сопротивление проводника, сила тока. Соответственно, для измерения этих величин использовались вольтметры, омметры, амперметры.

Современные электроприборы – это высокотехнологичные устройства, которые заключают в своей конструкции множество инженерных решений, в том числе различные электронные модули. Для отладки или ремонта систем, использующих эти модули, необходимо производить измерение множества параметров, связанных с работой устройств, для чего используется множество контрольно-измерительных приборов.

Наиболее простым и доступным прибором, используемым для этих целей, является мультиметр.

Назначение и виды

Назначение прибора угадывается из названия. «Мульти» – приставка в сложных словах, означающая «много». «Метрео» переводится с греческого языка как «измерять». Получается, что мультиметр – это прибор, которым можно измерить много различных параметров. Конечно же, почти все измеряемые параметры, так или иначе, связаны с электричеством.

Мультиметром невозможно измерить, например, артериальное давление человека или влажность воздуха, но используя некоторые модели, можно измерить температуру какого-либо предмета, жидкости или газа.

По конструкции выделяются следующие виды мультиметров:

  1. аналоговые;
  2. цифровые.

Аналоговые, ранее появившиеся в применении, заметно уступают цифровым в точности измерений и количестве измеряемых параметров. Они требуют дополнительной настройки и подготовки, перед тем как производить непосредственно измерение.

В конструкции приборов могут присутствовать элементы, работа которых основана на использовании явления магнетизма.

Точность аналоговых устройств сильно зависит от наличия магнитных полей в зоне измерений, влажности и температуры окружающей среды. Показания на таких устройствах считываются со шкалы, которая является многофункциональной.

Цифровые мультиметры намного проще в эксплуатации, чем аналоговые, они имеют более широкий диапазон выполняемых функций и пределы измерений, но при этом цена их выше. Показания выводятся в виде цифровой информации на жидкокристаллическом дисплее. Очень часто дисплей имеет подсветку для удобства использования мультиметра при недостаточном освещении.

Применение

Бывают случаи, когда человек, являясь профессионалом в какой-либо области, не касающейся электричества, совершенно не знает, зачем нужен мультиметр. Такое возможно потому, что еще недавно, буквально пару десятилетий назад, приборы эти производились только в аналоговом исполнении и были довольно дорогими.

Применялись они, в основном, профессиональными электриками, были громоздкими, иногда требовали применения дополнительного источника питания.

В последнее время мультиметры делают компактными, недорогими, пользоваться ими стало намного проще. Любой рачительный хозяин сейчас обладает хотя бы простейшей моделью из большого семейства этих устройств.

Ведь, если установлена причина неисправности какого-либо прибора домашнего обихода, то устранение ее может оказаться под силу обычному человеку, не обладающему профессиональными знаниями и навыками электрика. При этом нередко, имея под рукой такой полезный измерительный прибор, владелец его не всегда использует все функции мультиметра.

Мультиметр применяется при ремонте электроприборов, отладке схем, электронных устройств. В повседневной жизни он может использоваться при ремонте электрической бытовой техники, электрической части автомобилей, мотоциклов, устранении неисправностей в электрических сетях, при устройстве проводки, ремонте радиоаппаратуры. Область применения очень велика.

Какие параметры измеряет

Как же применяется один и тот же прибор в разных, на первый взгляд, ситуациях?

Все очень просто. В электрических устройствах обязательно существует множество элементов – электродвигатели, радиодетали, переключатели, катушки индуктивности, микросхемы, реле и прочие компоненты. Работа их непременно связана с наличием электричества, которое характеризуется такими параметрами как напряжение и сила тока.

Все типы мультиметров могут применяться при измерении напряжения переменного и постоянного тока, сопротивления проводника или участка цепи, силы тока на участке цепи с включенной нагрузкой.

Цифровой мультиметр, кроме того предоставляет возможность измерения емкости конденсаторов.

С помощью мультиметра можно проверять исправность диодов, транзисторов. Многие модели могут измерять частоту. Некоторые разновидности мультиметров имеют датчики температуры.

При обслуживании бытовой техники применение мультиметра основывается, как правило, на необходимости проверки – есть ток или нет тока. То есть проверяются подводящие кабели и шнуры на предмет обрыва, а также разъемы электрических цепей на наличие контакта. В этом случае мультиметр используется как омметр.

Проверка трансформаторов и электродвигателей

Иногда возникает необходимость проверки входного и выходного напряжения на трансформаторах блоков питания. Для измерения этих параметров необходимо использовать прибор, как вольтметр, произведя соответствующие настройки.

Многие бытовые машины содержат в конструкции электродвигатели, и в случае, когда двигатель не включается, приходится проверять наличие питающего напряжения на клеммах.

Если в питающей цепи неисправностей не выявлено, необходимо проверять исправность ротора, статора двигателя. Для этого можно проверить целостность проводов обмотки и наличие межвиткового замыкания.

Мультиметр при этом используется и как вольтметр, и как омметр.

Проверка реле и электронных схем

Иногда приходится проверять элементы автоматики – реле и электронные блоки. Реле проверяется, как правило, на величину тока открытия, для чего в цепь включается соответствующая нагрузка, и последовательно с ней мультиметр, работающий в режиме амперметра.

В блоках управления проверяется напряжение на соответствующих контактах или сопротивление между определенными парами контактов в соответствии с их функциональным назначением.

Проверяется с помощью мультиметра и работоспособность отдельных элементов электрических схем, например полупроводниковых приборов (транзисторов, тиристоров), конденсаторов.

Для этого детали выпаиваются из плат и вставляются в специальные разъемы на корпусе прибора. Такие функции доступны, как правило, в цифровых мультиметрах.

Применение в мото- и автотехнике

При обслуживании авто- и мототехники (к мототехнике можно отнести и различные садовые машины с двигателями внутреннего сгорания и лодочные моторы и прочую подобную технику) с помощью мультиметра может проверяться исправность генераторов, стартеров, аккумуляторных батарей.

Во всех этих случаях мультиметр используется для получения данных о напряжении и силе тока. Измерения могут проводиться в различных режимах работы проверяемых агрегатов.

В двигателях внутреннего сгорания проверяется система зажигания. Для этого могут прозваниваться свечи, проверяется сопротивление изоляторов. Тестируются катушки зажигания.

При отказе в работе каких-либо систем, в автомобилях проверяется проводка на предмет обрыва или короткого замыкания, двигатели приводов.

При помощи мультиметра можно установить, например, цела ли спираль в лампе накаливания, не вытаскивая лампу из блока фары. Для этого достаточно разъединить разъем питания фары и можно измерить сопротивление лампы, а потом напряжение питания.

В результате можно установить, действительно ли нужно менять лампу или необходимо искать обрыв в цепи. В последних моделях автомобилей это очень актуально, так как для замены лампы порой приходиться разбирать едва ли не всю переднюю облицовку.

Проверка электропроводки

При устройстве новой или ремонте старой проводки всегда появляется необходимость прозвонки кабелей, а также проверки работоспособности электроустановочных изделий, автоматических выключателей. Все эти операции также возможно с успехом осуществить, применив мультиметр.

Правильное использование мультиметра, этого универсального измерительного прибора с множеством функций и возможностей, помогает значительно улучшить условия эксплуатации техники.

Мультиметр помогает своевременно выявить необходимость ее ремонта, увеличивая при этом максимальный срок эксплуатации. Это в конечном итоге позволяет владельцам избежать лишних затрат на ремонт и реновацию.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные