Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Деление твёрдых тел на проводники, полупроводники и диэлектрики связано со строением их энергетических зон. Теория энергетических зон рассмотрена во введении к данному циклу работ.

В металле зона проводимости заполнена электронами не целиком, а лишь частично, приблизительно до уровня Ферми. По этой причине электроны в металле свободны и могут переходить с занятых уровней на свободные под влиянием слабых электрических полей. Концентрация свободных электронов в металле велика (порядка ~ 10 28 м -3), поэтому от температуры и других внешних факторов она зависит слабо. По этой причине согласно (6), температурная зависимость удельной проводимости, а значит и сопротивления, определяется изменением подвижности электронов. При этом существенным является то, что электронный газ в металле вырожден , т.е. его энергия является не температурой, а концентрацией электронов. Действительно, электроны в металле занимают энергетические уровни до уровня Ферми, который отстоит от «дна» валентной зоны на несколько электрон-вольт. Тепловая же энергия электронов (~ ) при обычных температурах намного меньше, порядка ~ 10 -2 эВ. Следовательно, поглощать тепловую энергию могут лишь немногие электроны с верхних уровней. Средняя энергия электронов, таким образом, почти не меняется с увеличением температуры.

У электронного газа, находящегося в состоянии вырождения, скорости хаотического движения электронов также определяются не температурой тела, а концентрацией носителей заряда. Эти скорости могут в десятки раз превышать среднюю скорость теплового движения, вычисленную из классической теории ( »10 5 м/с), т.е. »10 6 м/с.

Движущиеся электроны обладают как корпускулярными, так и волновыми свойствами. Длина волны электрона определяется формулой де Бройля:

, (8)

где - постоянная Планка,

Скорость электрона,

Эффективная масса электрона (понятие вводится для того, чтобы описать его движение носителя в твёрдом теле).

Подставив значение скорости =10 6 м/с в (8), найдём длину волны де Бройля для электрона в металле, она составляет величину 0,4 – 0,9 нм.



Итак, в металлических проводниках, где длина волны электрона порядка 0,5 нм, микродефекты создают значительное рассеяние электронных волн. Скорость направленного движения электронов при этом уменьшается, что согласно (4) приводит к уменьшению подвижности. Подвижность электронов в металле сравнительно невелика. В таблице 1 приведены подвижности электронов для некоторых металлов и полупроводников.

Таблица 1. Подвижность электронов в различных материалах при =300 К

С увеличением температуры увеличиваются колебания узлов решётки и появляется всё больше и больше препятствий на пути направленного движения электронов и электропроводность уменьшается, а сопротивление металла растёт.

Опыт показывает, что для чистых металлов зависимость от температуры линейна:

, (9)

где - термический коэффициент сопротивления,

Температура по шкале Цельсия,

Сопротивление при =0°С.

Для определения и необходимо построить график зависимости .

Рис.1. Зависимость сопротивления металла от температуры

Точка пересечения прямой с осью даст значение . Значение находится по формуле:

(10)

Электронная проводимость металлов

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов. Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела. В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рисунок 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

Следовательно, электрический ток в металлах - это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д.Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Опыт Мандельштама и Папалекси по выяснению движения электрона

Если электрон обладает массой, то его масса, или способность двигаться по инерции, должна проявляться повсюду, а не только в электрическом поле. Русские ученые Л. И. Мандельштам (1879-1949; основатель школы радиофизиков) и Н. Д. Папалекси (1880 - 1947; крупнейший советский физик, академик, председатель Всесоюзного научного совета по радиофизике и радиотехнике при АН СССР) в 1913 году поставили оригинальный опыт. Взяли катушку с проводом и стали крутить ее в разные стороны.

Раскрутят, к примеру, по часовой стрелке, потом резко остановят и - назад.

Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Движение электронов по проводу - электрический ток. Как задумали, так и получилось. Подсоединили к концам провода телефон и услышали звук. Раз в телефоне слышен звук, следовательно, через него ток протекает.

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт. Они тоже крутили катушку, но вместо телефона к ее концам подсоединили прибор для измерения заряда. Им удалось не только доказать существование у электрона массы, но и измерить ее. Данные Толмена и Стюарта потом много раз проверялись и уточнялись другими учеными, и теперь вы знаете, что масса электрона равна 9,109 Ю-31 килограмма.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции, Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке. Заряда. Если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево и наоборот. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе elm).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис.2.

Рисунок 2

На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8 1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

Никого сегодня не удивляет, что, прикоснувшись к клавише выключателя, мы видим загоревшуюся лампочку. Зачастую мы даже не задумываемся, что все подобные действия основаны на целой серии Одно их таких крайне любопытных явлений - электропроводность металлов, которая обеспечивает протекание электрического тока.

Для начала, наверное, следует определиться, о чем вообще идет речь. Итак, электропроводностью называют способность вещества пропускать Причем разные вещества обладают этой способностью в разной степени. По степени электропроводности вещества разделяются на проводники, полупроводники и диэлектрики.

Если посмотреть экспериментальные данные, полученные исследователями за время изучения электрического тока, то станет ясно, что проводимость металлов самая высокая. Это же подтверждает повседневная практика, когда для передачи электрического тока используют металлические провода. Именно металлы в первую очередь выступают проводниками электрического тока. И объяснение этому можно найти в электронной теории металлов.

Согласно последней, проводник представляет собой кристаллическую решетку, узлы которой занимают атомы. Они расположены очень плотно и связаны с соседними подобными атомами, поэтому остаются практически в узлах кристаллической решетки. Чего нельзя сказать об электронах, расположенных на внешних оболочках атомов. Эти электроны могут свободно беспорядочно двигаться, образуя так называемый “электронный газ”. Вот электронная проводимость металлов и основывается на таких электронах.

В качестве доказательства того, что природа электрического тока обусловлена электронами, можно вспомнить опыт немецкого физика Рикке, поставленный в 1901 году. Он взял два медных и один алюминиевый цилиндры с тщательно отполированными торцами, поставил один на другой и пропускал через них электрический ток. По замыслу экспериментатора, если электропроводность металлов обусловлена атомами, то происходил бы перенос вещества. Однако после пропускания электрического тока в течение года масса цилиндров не изменилась.

Из этого результата следовал вывод, что электропроводность металлов вызвана какими-то частицами, присущими всем проводникам. На эту роль как раз и подходил электрон, который к этому моменту уже был открыт. В дальнейшем провели еще несколько остроумных опытов, и все они подтвердили, что электрический ток обусловлен движением электронов.

В соответствии с современными представлениями о металлов, в ее узлах располагаются ионы, а электроны относительно свободно перемещаются между ними. Именно большое количество таких электронов и обеспечивает высокую электропроводность металлов. При наличии небольшой на концах проводника эти свободные электроны начинают перемещаться, что и вызывает протекание электрического тока.

Здесь надо отметить, что проводимость сильно зависит от температуры. Так, при росте температуры проводимость металлов уменьшается, и наоборот, увеличивается при понижении температуры, вплоть до В тоже время следует помнить, что хотя проводимостью обладают все металлы, ее величина для каждого из них своя. Лучшей проводимостью из наиболее широко распространенных и применяемых в электротехнике металлов обладает медь.

Итак, приведенный материал дает понятие, что собой представляет электропроводность металлов, объясняет природу электрического тока и поясняет, чем она вызвана. Дано описание кристаллической решетки металлов и влияние некоторых внешних факторов на проводимость.

Электрическая проводимость металлов - это способность элементов и тел проводить через себя определенное количество негативно заряженных частиц. Само проведение электрического тока объясняется достаточно просто - в результате воздействия электромагнитного поля на проводниковый металл, электрон настолько ускоряет свое движение, что теряет связь с атомом.

В Международной системе измерения единиц электропроводность значится буквой S и измеряется в сименсах.

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной. Электронной проводимостью обладают металлы. Существует такая проводимость и в верхних слоях атмосферы, где плотность вещества невелика, благодаря чему электроны могут свободно перемещаться, не соединяясь с положительно заряженными ионами.Жидкие электроны обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустое” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Электропроводность металлов. Виды электропроводности. Уровень Ферми.

Виды электропроводности

В зависимости от вида и природы зарядоносителей проводимость бывает электронной, ионной и дырочной.

Электронной проводимостью обладают металлы.

Жидкие вещества обладают ионной проводимостью. Ионы, являющиеся зарядоносителями, при движении перемещают вещество, в результате чего происходит выделение его на электродах.

Возможен механизм проводимости, обусловленный разрывом валентной связи, приводящим к появлению вакантного места с отсутствующей связью. Такое “пустые” место с отсутствующими электронами связи получило название - дырка. Возникновение дырки в кристалле проводника создаёт дополнительную возможность для переноса заряда. Этот процесс, сопровождающийся перемещением электронов, получил название дырочной проводимостью.

Проводниками электрического тока могут служить твердые тела, жидко­сти, а при соответствующих условиях и газы.

К твердым проводникам относят металлы, металлические сплавы и некоторые модификации углерода.

Металлы – это пластичные вещества с характерным для них блеском, которые хорошо проводят электрический ток и теплоту. Среди материалов электронной техники металлы занимают одно из важнейших мест.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Как правило температура плавления металла высока, за исключе­нием ртути (Hg), у которой она составляет -39°C. Поэтому при нормальной температуре в качестве жидкого металлического проводника можно использо­вать только ртуть. Температуру близкую к нормальной (29,8°С) имеет еще галлий (Ga). Другие металлы являются жидкими проводниками только при повышенных или высоких температурах.

Механизм прохождения тока по металлам в твердом и жидком состояниях обусловлен движением свободных электронов. Поэтому их называют проводниками с электронной электропроводностью или проводниками первого рода.

Электролитами, или проводниками второго рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. Прохождение токов через такие проводники связано с переносом вместе с электрическими зарядами частей молекул (ионов). В результате этого состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза.

Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля ток не проводят. Однако, если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов и положительных ионов в единице объема представляет собой равновесную проводящую среду, называемую плазмой.

В основе классической электронной теории металлов, развитой Друде и Лоренцом, лежит представление об электронном газе, состоящем из свободных электронов. Электронному газу приписываются свойства идеального газа, т.е. движение электронов подчиняется законам классической статистики

В случае приложения внешнего напряжения электроны получат некоторую добавочную скорость направленного движения в направлении действующих сил поля, благодаря чему и возникает электрический ток.

В процессе направленного движения электроны сталкиваются с атомами узлов решетки. При этом скорость движения замедляется, а затем под воздействием электрического поля ускоряются:

Наличием свободных электронов обусловливается и высокая теплопроводность металлов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них - следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.



Теплопроводность можно определить, как свойство вещества проводить (передавать) тепловой поток под действием не изменяющейся во времени разности температур.

Энергия Ферми E F - максимальное значение энергии, которое может иметь электрон при температуре абсолютного нуля. Энергия Ферми совпадает со значениями химического потенциала газа фермионов при Т =0 К , то есть уровень Ферми для электронов играет роль уровня химического потенциала для незаряженных частиц. Соответствующий ей потенциал j F = E F /е называют электрохимическим потенциалом.

Таким образом, уровнем Ферми или энергией Ферми в металлах является энергия, которую может иметь электрон при температуре абсолютного нуля. При нагревании металла происходит возбуждение некоторых электронов, находящихся вблизи уровня Ферми (за счет тепловой энергии, величина которой порядкаkT ). Но при любой температуре для уровня с энергией, соответствующей уровню Ферми, вероятность заполнения равна 1/2. Все уровни, расположенные ниже уровня Ферми, с вероятностью больше 1/2 заполнены электронами, а все уровни, лежащие выше уровня Ферми, с вероятностью больше 1/2 свободны от электронов.

Существование энергии Ферми является следствием принципа Паули. Величина энергии Ферми существенно зависит от свойств системы.

Прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их (§ 40). Это обстоятельство заставляет предполагать, что атомы металла при прохождении тока не перемещаются от одного участка проводника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке (1845-1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминиевый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3000000 Кл). Производя затем тщательный анализ места соприкосновения меди и алюминия, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током.

Каким же образом происходит перенос зарядов при прохождении тока через металл?

Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положительные заряды, входящие в состав каждого атома, существенно отличаются друг от друга. Положительный заряд связан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заряды – электроны, обладающие определенным зарядом и массой, почти в 2000 раз меньшей массы самого легкого атома – водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заряженный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов металла, образуя его кристаллическую решетку (см. том I).

Одним из наиболее убедительных явлений, обнаруживающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что электроны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с веществом металла. Так как при прохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электричества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе ).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолированные друг от друга полуоси , укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

Рис. 141. Исследование природы электрического тока в металлах

Итак, опыты показывают, что в металлах имеются свободные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упорядоченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике).

86.1. Металлический незаряженный диск приводится в быстрое вращение и, таким образом, становится «центрифугой для электронов». Между центром и периферией диска возникает разность потенциалов (рис. 142; 1 – диск, 2 – контакты, 3 – электрометр). Каков будет знак этой разности?

Рис. 142. К упражнению 86.1

86.2. По серебряной проволоке с сечением 1 мм2 проходит ток силы 1 А. Вычислите среднюю скорость упорядоченного движения электронов в этой проволоке, полагая, что каждый атом серебра дает один свободный электрон. Плотность серебра равна кг/м3, его относительная атомная масса равна 108. Постоянная Авогадро моль-1.

86.3. Сколько электронов должно проходить через поперечное сечение провода ежесекундно, чтобы в проводе шел ток 2 А? Заряд электрона равен Кл.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные