Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Экология потребления.Усадьба:Одним из условий качественного утепление дома является расчет точки росы, которая должна находиться ближе к наружной стене, и ни в коем случае – внутри дома. Для этого нужно уметь определить, где будет расположена точка росы при разных условиях, чтобы исключить возможность образования конденсата на стенах внутри помещения.

Утепление стен – один из главных вопросов при строительстве. С первого взгляда может показаться, что очень просто его решить – выбирай тот, который подходит по климатическим условиям и финансам, и утепляй. Однако, это не так. Существует ряд технических условий, которые необходимо выполнить, чтобы стены дома в холодное время года не сырели внутри и не промерзали снаружи.

Одним из этих условий является утепление дома так, чтобы точка росы находилась ближе к наружной стене, и ни в коем случае – внутри дома. Для этого нужно уметь определить, где будет расположена точка росы при разных условиях, чтобы исключить возможность образования конденсата на стенах внутри помещения.

Что такое точка росы

Точка росы – это показатель температуры, при котором происходит максимальное насыщение воздуха паром, и он начинает конденсироваться. Зависит этот показатель от двух основных факторов: температуры и влажности воздуха.

При изменении хотя бы одной из этих двух величин меняется и точка росы, то есть она постоянно перемещается, так же, как и не бывают все время постоянными температура и влажность воздуха.

Существует таблица точек росы при разных температурах и влажности воздуха, разработанная специалистами. Из нее можно увидеть, при каких условиях пар начинает конденсироваться. Например, в зимнее время при нормативной температуре воздуха в помещении +200С и влажности от 50% до 60% точка росы будет колебаться от 9,30С до 120С. То есть, внутри помещения не должен образовываться конденсат, так как при указанных условиях нет поверхностей с такой температурой.

Рассмотрим далее. Если в доме +200С, а на улице температура -200С, то в стене найдется точка росы с температурой +120С при относительной влажности 60%. Точка росы может перемещаться по толщине стены в зависимости от температуры внутри помещения и снаружи, а также от влажности в самой стене. Чем ближе точка росы к внутренней поверхности, тем больше вероятность того, что стена будет мокрая изнутри. А это уже создает неблагоприятные условия для проживания. Утепляя дом, мы можем сместить точку росы, так как при этом меняется температура самой стены.

Где будет находиться точка росы

Могут существовать три варианта конструкции стены: без утеплителя, с наружной и внутренней обшивкой. Рассмотрим, где может находиться точка росы в каждом из этих случаев?

  1. Конструкция без утеплителя, тогда точка росы расположена:
  • внутри стены ближе к наружной поверхности;
  • внутри стены смещена к внутренней поверхности;
  • на внутренней поверхности – внутри помещения стена будет оставаться мокрой на протяжении всего зимнего периода.

2. Имеется наружный утеплитель, тогда точка росы находится:

  • внутри утеплителя – это говорит о том, что расчет точки росы и толщины утеплителя проведены правильно, и стена в помещении будет сухой;
  • любой из трех описанных случаев в пункте 1 – причиной является неправильный выбор утеплителя и его характеристики.

3. Сделана внутренняя обшивка, то точка росы будет:

  • внутри стены ближе к утеплителю;
  • на внутренней поверхности стены под обшивкой;
  • в самом утеплителе.

Из рассмотренного выше становится понятно, что расположение точки росы также зависит от таких характеристик ограждения, как температура и паропроницаемость. Большинство современных утеплителей практически не пропускает пар, поэтому рекомендуется наружная обшивка стен.

Если вы выбираете внутреннее утепление, то нужно соблюсти следующие условия, чтобы:

  • стена была сухой и теплой;
  • утеплитель имел хорошую паропроницаемость и небольшую толщину;
  • в здании функционировали вентиляция и отопление.

Зная возможные зоны образования конденсата, т.е. место расположения точки росы, можно для определенных климатических зон подобрать такой вид и материал утепления, который не создаст условий для сырых стен внутри дома.

Существует мнение, что дом должен утепляться снаружи, а утеплитель по всем параметрам соответствовать ГОСТу. Тогда точка росы будет находиться внутри обшивки, то есть снаружи дома, и внутренние стены будут сухими в любой сезон. Именно поэтому наружное утепление выгоднее внутреннего.

Точка росы это температура, при которой находящийся в воздухе водяной пар становится насыщенным. При температуре точки росы.ю относительная влажность становится 100%. Рассмотри такое явление как точка росы более подробно

«Дышащий» материал стен – достоинство? Очень спорно. Возможно, стены должны быть прочными, и удерживать тепло в доме, а пар пропускать им вовсе не обязательно, для этого существует вентиляция, естественная и принудительная?

Откуда в доме пар – понятно. В жилище воздух всегда – в основном – теплее, тем на улице. Вода льется в ванных и в кухнях, водой поливают комнатные цветы, часто делают в доме влажную уборку. Чем больше разница температур в доме и на улице, тем больше водяного пара стремится покинуть помещение. Эта зависимость не линейная, поскольку есть еще фактор – влажность, причем разная, в доме одна, а на улице другая. Чем меньше влажность дома и на улице, тем меньше риск появления на внутренних поверхностях стен влаги в виде конденсата.

Когда водяной пар идет сквозь стену, стене от этого плохо. Теплопроводность материала стен увеличивается, поскольку присутствует вода, которая тепло проводит очень неплохо, и в виде пара тоже. Стеновые материалы всегда обладают влагоемкостью (если они не из металла), то есть накапливают воду. Пар, идущий сквозь дышащие стены, оказывает на них вредное влияние, по сути, очень медленно разрушает, одновременно увеличивая потери тепла из помещений. Если зимой накопление влаги в стене меньше нормативного значения, то существенного вреда не будет. Но очень желательно, чтобы точка росы зимой находилась вне наружной стены.

Точка росы

Точка росы измеряется в градусах. Это температура, при которой содержание водяного пара в воздухе максимальное. Точка росы не может иметь большее значение, чем температура воздуха – выпадает конденсат. Например, в кухне, где моют посуду и готовят, точкой росы будет температура оконного стекла, на котором можно увидеть капли воды.

Точка росы может находиться и вне стены и внутри, это зависит от влажности и температуры воздуха внутри и снаружи помещения, и от толщины и паропроницаемости каждого слоя стенового «пирога».

Комплексная отделка и утепление стен по технологии "Мокрый фасад" имеет неоспоримые преимущества. Но первые два варианта несколько отличаются от маркетинговых презентаций, представленных ниже. Это не совсем так.

Точка росы в неутепленной стене

  1. Точка росы внутри стены, находится ближе к ее наружной грани и не доходит до центра стены – внутри стена сухая, все хорошо.
  2. То же, но точка росы ближе к внутренней грани стены, чем центр стены – в этом случае, если резко понизится наружная температура воздуха, стена изнутри будет мокрой какое-то время, около нескольких дней. Сколько именно – зависит от водопоглощения и паропроницаемости материала стен. Например, у керамического кирпича эти параметры отличные, морозы отступят, и влага выйдет. Но какое-то время, как сказано выше, стенка мокрой будет.
  3. Самый ужасный вариант – точка росы на внутренней поверхности стены. Скорее всего, всю зиму стена будет мокрая, все зависит от того, сколько пара в помещении. Нельзя же постоянно держать форточки открытыми зимой.

Точка росы в стене с наружным утеплением

  1. Точка росы внутри утеплителя – нормальный вариант, толщина утеплителя правильная, теплотехнический расчет верный, стена внутри сухая, а утеплитель отдаст влагу наружу при изменении температуры и влажности воздуха
  2. Если расчет неверный или изменились параметры – утеплитель поврежден и т.п., то точка росы будет находится внутри стенового материала, а не в слое утеплителя. Последствия - как для неутепленной стены по пунктам 2 и 3.

Точка росы в стене с внутренним утеплением

Поверхность конденсата смещается внутрь, и варианта опять три:

  1. Точка росы между слоем утеплителя и серединой стены. Если резко похолодает – точка росы сместится на их границу. Стена будет сухой.
  2. Точка росы за слоем утеплителя, внутри стены – стена будет сырой всю зиму.
  3. Точка росы внутри утеплителя – всю зиму утепляющий слой будет впитывать образующийся конденсат.

Паропроницаемость строительных материалов

Приведем ниже в таблице коэффициенты паропроницаемости строительных материалов

Чтобы микроклимат в доме был нормальным, при конструировании стеновых «пирогов» учитывают как толщину каждого слоя, так и его свойства водопоглощения и паропроницаемости. Слои пирога должны располагаться таким образом и иметь такие толщины, чтобы паропроницаемость увеличивалась изнутри – наружу. Это «правило паропроницаемости» лучше соблюдать. Иначе – два варианта:

  1. Плохая вентиляция и высокая влажность в доме - значит, можно получить точку росы в неположенном месте, и как результат сырость и плесень с грибком на стенах, а возможны и разрушения стен.
  2. Внутри дома влажность небольшая, а вентиляция организована – никаких вредных последствий для микроклимата от нарушения правила не будет, если не считать вредное влияние влаги на материал стен.

Все это так, точку росы учитывать надо, поскольку она фактор риска. Но степень этого риска – зависит от реального, фактического количества сконденсированной в стене воды и от свойств материала стены. Чем меньше водопоглощение у стенового материала, то есть чем меньше он впитает влаги, тем меньше ему грозит разрушение при замерзании и расширении в порах этой влаги. Кирпичные хрущевки стоят уже более 60 лет, а разрушатся и не думают, хотя по теплотехническим расчетам у них в стенах конденсат. Керамический кирпич имеет хорошие характеристики по морозостойкости, морозы заканчиваются, и кирпич влагу отдает в воздух. Но надо помнить, что стены у хрущевок – толщиной полметра.

Расчет температуры точки росы

Рассчитать точку росы можно и нужно, для этого не обязательно штудировать науку теплотехнику. Можно считать по калькуляторам из инета, вполне достойным, работающим на основе теплотехнических формул и базы данных характеристик материалов. Лучше, конечно, доверить окончательный расчет профессионалам.

Приведем таблицу с возможностью расчета температуры точки росы.

Дышащие стены

По вопросу дыхания стен. Возможно, этот вопрос относится не столько к строительной физике, сколько к идеологии? Были когда-то щелястые окна, они обладали чудесной паропроницаемостью, да и стены дышали вовсю. При этом за отопление не нужно было отдавать хорошую часть зарплаты. Сегодня ситуация иная, причем давно – вопрос энергосбережения для частного дома стоит ребром. Укоренившиеся фразеологизмы вида – энергосберегающий дом, энергоэффективный стройматериал - уже говорят о многом. Возможно, стены дома должны держать тепло, а дыхание должна обеспечить грамотно организованная вентиляция? Маркетологи ведь умеют рассказывать сказки, и о дыхании домов, отрастивших жабры благодаря инновационным стройматериалам... тоже.

Строительные технологии предполагают учет множества нюансов, влияющих на долговечность конструкции и способность к сопротивлению от негативного влияния внешних факторов. Одним из главных врагов большинства зданий и сооружений является постоянная повышенная влажность. Для борьбы с ней используются разнообразные методики.

Учитывать все факторы необходимо на первоначальной стадии проектирования, когда имеется возможность повлиять на применение материалов и формирование экстерьера зданий. Важное место в подобной ситуации отводится грамотным расчетам при утеплении зданий. Обязательным атрибутом в них является определение температуры точки росы.

Базовое знание

Крупные строительные объекты применяют сложные и громоздкие программы для вычислений. В ход идет множество коэффициентов и математических формул. В бытовых условиях методика существенно упрощается. Используется множество округлений и приближений в расчете, при этом погрешность получается минимальной.

Владельцы жилья или строители смогут самостоятельно провести расчет точки росы в стене без привлечения сторонних специалистов.

Для понимания того, чтобы найти точку, необходимо знание об окружающем воздухе и наличии в нем водяного пара. Он формируется вследствие множества событий, например, частички воды отделяются от жильцов, любых источников жидкости, емкостей с водой, появляются после влажной уборки помещения и пр.

Вместимость воздуха обладает определенным максимумом. При получении этого параметра водяные частицы начинают взаимодействовать друг с другом, образуя более крупные водяные капли. Так и получается конденсат. В природе он заметен в виде тумана или капелек на растениях.

Когда воздух насыщен максимально жидкостью и не может больше получать от нее подпитку без перехода в конденсат, то говорится о том, что в данном случае относительная влажность достигла уровня 100%. Последующие насыщения превращают воздух в туман, который представляет собой большое количество капель воды в воздухе, находящихся в подвешенном состоянии.

Особенность этого события заключается в том, что разная температура воздуха способна обеспечить различную степень насыщенности влагой до перехода в конденсат. Имеется прямая зависимость от высокой температуры и количеством растворенной жидкости в воздухе. При этом, когда воздух с влагой 70-80% получает контакт с охлажденным предметом, то происходит предел насыщения, а степень влажности в плоскости контакта моментально достигает 100%.

Что приводит к выпадению конденсата

События приводят к выпадению конденсата. Это взаимодействие во многом объясняет, что такое точка росы. Рассматривая данный пример, очевидно, что этот параметр в строительстве или в другой сфере является переменной величиной. Выражается она в градусах. Основные параметры, которые влияют на нее:

  • относительная влажность в данный момент;
  • текущая температура воздуха;
  • скорость движения воздуха;
  • толщина материалов.

Для получения расчетных значений используются измерительные приборы: психрометры и термометры. Расположение искомого значения в стене помогает рассчитать специальная таблица. Значения для проработки можно не только измерять, но и узнавать из текущего прогноза погоды. Множество сайтов предоставляет информацию не только о температуре, но и о влажности.

ВИДЕО: Почему на стенах выпадает конденсат

Роль понятия в строительном процессе

Рекомендуем воспользоваться специальной таблицей, подготовленной специалистами для определения расположения точки росы в стене. Предпочтительней воспользоваться собственным определением параметра, не прибегая к помощи множества онлайн калькуляторов. Зачастую встроенные алгоритмы в них не учитывают важные факторы.

В приведенной таблице используется шаговый принцип. Для промежуточных значений между двумя соседними можно использовать среднеарифметическое значение.

Пользоваться таблицей просто. От измеренного значения температуры в помещении ведем горизонтальную линию. От измеренного значения влажности ведем вертикальную линию. На пересечении получим искомое число температуры. Наглядно это будет выглядеть следующим образом.

Рассмотрим пример. Представим себе дом, стены которого выложены из кирпича. Внутри помещения, например, будет температура +20°С, а снаружи - прохладнее, например, -10°С. В комнате влажность воздуха составляет 60%. Соединив горизонтальную и вертикальную линии в таблице (20 и 60) получим на пересечении 12°С.

Каждый кирпич будет иметь неоднородную температуру. Внутренняя его поверхность будет обладать максимально высоким значением (+20°С), а наружная часть окажется с максимально низким параметром (-10°С). В середине кирпича окажется плоскость с температурой +12°С. В этом месте станет конденсироваться влага. Процесс будет происходить и на всем объеме с более низкими значениями.

Переломить ситуацию в позитивную сторону помогает использование различных утеплителей. Они способствуют смещению положения точки росы в стене. В зависимости от того, с какой стороны владельцы дома смонтировали утеплитель, будет перемещаться плоскость конденсации. Если все сделано правильно, то эта точка будет не в стене дома, а в утеплительном ограждении. Таким образом не будет происходить разрушения конструкции.

Необходимо учитывать, что без утепления плоскость с точкой росы в нашем климате будет располагаться непосредственно в глубине стены. Это демонстрирует первый рисунок, поэтому влага станет приносить вред конструкции, обеспечиваю распространение грибка и плесени в помещении. Точка росы в стене будет располагаться на глубине, которая зависит от паропроницаемости конкретного строительного материала.

Необходимо, чтобы водяной пар проник до места с расчетной температурой. Этот фактор учитывается при выборе материала.

Требования по утеплению и теплоизоляции

Паропроницаемостью принято называть значение, демонстрирующее, какое количество водяного пара способен пропустить сквозь себя строительный материал за выделенное время. Проницаемыми по этому критерию являются практически все популярные материалы:

  • дерево;
  • бетон;
  • кирпич и пр.

От некоторых строителей можно услышать такое понятие, как «стены дышат». Пористые материалы также могут попадать в список (керамзит, минеральная вата и пр).

Бояться того, что в стене имеется какая-то стационарная часть с точкой росы, не стоит, так как это происходит на определенном участке. Строители называют место зоной возможной конденсации. Учитывая, что большинство ограждений являются «дышащими», то много влаги уходит вовне.

Правильным построением здания является такое расположение материалов, при котором определение точки росы в стене попадает в наружный утеплительный слой. Важно также обеспечить помещение качественной вентиляцией, при которой избыточная влага покидает квартиру или дом. При таких условиях материал не успевает напитываться жидкостью.

Предлагаемые производителями различные утеплители из полимеров за счет своей конструкции практически не пропускают пар. Благодаря такому свойству их рекомендуют располагать снаружи стен. В таком случае точка росы, при которой происходит конденсация, переместиться внутрь пенопласта или полистирола. Однако, к этой зоне не сможет подобраться водяной пар. Влага не сформируется.

Не рекомендуется использовать для утепления фасада экрудированый пеностерол. Его применяют только для фундамента или закрытых строительных систем. В результате постоянных перепадов температур и попадания прямых солнечных лучей уже спустя год-полтора он начинает крошиться.

Также произойдет при обратном процессе. Не стоит проводить утепление внутренних стен полимерами, ведь точка росы расположится в стене. При этом нежелательная влага просочится в стык материалов.

Разумно использовать внутреннее утепление в следующих случаях:

  • стена практически всегда является теплой и сухой;
  • в жилом здании имеется качественная вентиляция;
  • использовать необходимо качественный проницаемый утеплитель, обеспечивающий удаление избыточной влаги.

Заключение

Выявить конкретное место с точкой росы достаточно тяжело, так как эта зона является плавающая и зависит от внешних факторов. Желательно использовать внешнее утепление, чтобы перенести точку в утеплительный материал. Применять качественную вентиляцию в помещении для удаления водяного пара.

ВИДЕО: Правильное утепление или Как убрать точку росы из стены

Господа.
Вот задумался я.
На всем нам известном сайте многие не правильно забивают параметры и получают неверные результаты.
А тем временем задаю значения.
Температура снаружи = -25 гр.
Температура внутри + 24 гр.
Влажность снаружи 80%
Влажность внутри 40 % (40-60% минимально необходимая для комфортного самочувствия)

Теперь смотрим что получается:

1. Любимый конструктив частных застройщиков. Газобетон 375 мм со штукатуркой. Можно без штукатурки.

Конденсат = 20.17 гр/м2/час
Точка росы в газобетоне начинает образовываться начиная с 15% влажности внутри дома.
Точка росы находится преимущественно в зоне отрицательных температур.

2. Газобетон утепленный 100 мм пенопласта

Конденсат = 17.69 гр/м2/час
Точка росы находится также в зоне отрицательных температур

3. Газобетон утепленный 100 мм минеральной ватой

Конденсата и точки росы внутри стены нет. Неплохой конструктив.

4. Стена в 2,5 полнотелых кирпича толщиной 64 см. (Привет 90-е)

Конденсат = 17 гр/м2/час
Точка росы находится в зоне отрицательных температур.

5. Кирпичная стена в 1,5 пустотелых кирпича, утепленная минеральной ватой 100 мм.

Конденсата и точки росы внутри стены нет. Мой любимый конструктив. Конечно далее идет вент. зазор 3-4 см и декоративная отделка.

6. Кирпичная стена в 1,5 пустотелых кирпича, утепленная пенопластом 100 мм.

Конденсат = 0.56 гр/м2/час
Точка росы находится в пенопласте. Наверное это не очень хорошо. Ухудшится показатель теплопроводности и теоретически срок службы.

Выводы:
Любая однородная стена из строительных материалов таких как газо-пено блоки, керамзитобетонные блоки, теплая керамика, кирпич и пр. имеет точку росы зимой в своей толще. Это уменьшает срок службы стены, увеличивает вероятность появления высолов на облицовке, ухудшает теплопроводность. Из-за многократных циклов замораживания/оттаивания может материал стены со временем теряет прочность.
Таким образом, любая однородная стена требует утепления.
Утеплитель должен обладать хорошей паропроницаемостью, чтобы не задерживать пар в толще конструкции.
Самая плохая паропроницаемость у экструдированного пенополистирола. Он подходит для утепления бетонных фундаментов и стен, а также плоских кровель по бетонному перекрытию.
Более паропроницаем обычный пенопласт. Он при некоторых условиях подходит для утепления кирпичных стен.
Самый паропроницаемый утеплитель - это минеральная плита. Он подходит для утепления стен из любых материалов.
Естественно между утеплителем (пенопластом или минеральной плитой) и облицовкой должен быть предусмотрен вент. зазор для удаления пара с поверхности утеплителя. Организация вент. зазора в каждом конкретном случае делается по разному.

    Smart2305 сказал(а):

    Чтобы вывести точку росы из толщи стены.

    А зачем? Пусть она живет своей жизнью - "точка росы", вообще вещь сама в себе - не надо из неё делать фобию.
    http://www.aeroc.ru/material/mifi/

    Миф двенадцатый - "без наружного утепления точка росы оказывается в стене"

    «Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.
    Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.
    Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т. д.
    Проиллюстрируем наши рассуждения примерами:
    Исходные условия: температура внутреннего воздуха: +20°С, влажность 40%; температура наружного воздуха: -15°С, влажность 90%

    На первом изображении: Плотности реального и насыщенного водяного пара в толще стены
    На втором изображении: Изменение температуры по толщине стены
    --- плотность насыщенного водяного пара
    --- плотность реального водяного пара

    Следующие иллюстрации достаточно наглядно демонстрируют: конденсация становится возможной при уменьшении паропроницамости отделочных слоев или утеплителя по сравнению с предыдущими слоями.

    Однослойная стена с паропроницаемой отделкой лишь в редкие особо морозные зимы может увлажняться конденсируемой влагой. В условиях климата Украины конденсацией паров в толще однослойных стен можно пренебречь.

    Наружное утепление минеральной ватой : При «мокрой» отделке утеплителя конденсация возможна на границе [штукатурка/утеплитель], с поледующим намоканием утеплителя

    Наружное утепление пенополистиролом: Конденсация возможна на границе [несущая стена/утеплитель]

    Traks , 30.01.14

    nadegniy сказал(а):

    Немного поправлю, пар не движется сквозь стену, нет такого...

    Э-э-э... даже комментировать не вижу смысла.
    Ну как можно так вот нести совершенно безграмотную околесицу?

    В зимнее время температура воздуха с внутренней стороны ограждения бывает значительно выше температуры наружного воздуха. Если при этом предположить, что относительные влажности внутреннего и наружного воздуха будут одинаковыми, то упругость водяного пара с внутренней стороны ограждения окажется значительно более высокой, чем с наружной его стороны. Таким образом, в зимнее время наружное ограждение отапливаемых зданий разделяет две воздушные среды с одинаковым барометрическим давлением, но с разными значениями упругости (парциальными давлениями) водяного пара. Разность величин упругости водяного пара в обычных условиях может достигать 1300 Па, а в зданиях с повышенной температурой и высокой относительной влажностью воздуха может быть и значительно выше.
    Разность величин упругости водяного пара с одной и с другой стороны ограждения вызывает поток водяного пара через ограждение от внутренней его стороны к наружной стороне. Это явление носит название диффузии водяного пара через ограждение.

    К. Ф. Фокин
    Строительная теплотехника ограждающих частей зданий #87 , 02.02.14

    Относительная влажность знаете, что такое?
    Это максимум влаги в газообразном состоянии (пар), который может содержаться в воздухе при определенной температуре.
    Если давление пара достигает максимального (100%-ная относительная влажность) для данной температуры значения, то излишки пара превращаются в воду. Но давление выше максимального не растет. И не может давление "накапливаться". #135 , 02.02.14

    Serjei сказал(а):

    Ну вообще то для меня важнее тема точки россы в стене, а не то что вы нашли такой "большой" недостаток ошибки в калькуляторе. Вы принципиально не отвечаете на вопросы про -40 и конструкцию стены. Или вам интереснее писать не о чем подмигивая и улыбаясь?

    Это не ошибка в калькуляторе. Это ошибка в выборе данных.
    Теперь про -40 градусов и т. п.
    Живу я недалеко от Рязанской области (чутка севернее), в Рязани пожил не мало, часто там гощу. -40 на моей памяти было только в год перед московской олимпиадой.
    Ну да ладно. - 40, так -40. При -40 вода безусловно замерзает. Но дело в том что пористость ПБ плотностью 300 кг на куб больше 80%. Т. е. воздуха в этом пенобетоне больше 80%. Т. е. те несколько граммов, что при такой температуре выпадет в зоне конденсации, замерзнув, будут видны разве что через микроскоп. Опасности не представляют от слова вообще.
    Конструкция Ваша мне до фонаря. Я ее не комментировал. Я комментировал лишь расчет.
    Ирония моя связана с тем, что в калькуляторе написано, что (при нормативных расчетных параметрах - они есть там, где выбирали город) в конструкции нет условий для образования конденсата. Она совершенно безопасна. Но Вам почему-то неймется и Вы рассуждаете о неком замерзании конденсата в - 40.
    Ничего что я еще раз подмигну улыбаясь?
    Удачи #326 , 23.03.16

    Иванов Костя сказал(а):

    Весь вопрос сводится к скорости разрушения.

    Неа. Весь вопрос сводится к пористости. Если б Вы внимательно читали других, то узнали бы что пористость ячеистых бетонов (ЯБ - пено и газобетоны) крутится в районе 80%. Т. е. "в среднем по больнице" для того чтобы при переходе из жидкого состояния в твердое (лед) вода не разрушала стенки пор в кубе ЯБ есть аж 800 литров воздушного пространства. Это значит, что если Вы не будете принудительно замачивать ЯБ в емкости с водой, а потом засовывать его в холодильную камеру, то неоткуда взять такого количества влаги, чтобы она при замерзании начала что-то разрушать.
    Даже у кирпича минимум 20% пористости. У самого плотного. 200 литров в кубе - воздух.
    Не кошмарьте. #333 , 24.03.16

    Serjei сказал(а):

    Я вам уже говорил, что про естественную влагу находящуюся в материалах наверно даже ребенку понятно. Мне же интересно, что означает зона конденсации в калькуляторе в моем случае? Ведь каждый материал имеет ограниченное количество циклов заморозки, разморозки, свою морозостойкость. Имея такую зону конденсации будет пенобетон в данном случии терять с годами морозостойкость? Вот что меня интересует, прямые ответы с объяснением, на прямые вопросы.

    Зона конденсации означает, что вероятность выпадения конденсата при указанных параметрах климата внутри и снаружи помещений существует.
    Расчет в калькуляторе показывает, что количество влаги, которое может скопиться в зоне конденсации:
    - будет таковым, что полностью испарится в летний период.
    - не превысит то количество, которое может снижать характеристики (в т. ч. и физико-механические) материала.
    Прямой ответ: морозостойкость терять не будет.
    Объяснение: испытание, определяющее циклы заморозки-разморозки проводится с содержанием влаги в материале, на порядки превышающее то, которое сможет выпасть в исследуемой Вами зоные конденсации. Процедуру проведения испытаний и параметры увлажнения пенобетона (количество влаги) можете поискать в нормативной документации. #376 , 25.03.16

    ArtKs сказал(а):

    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.



    Нормируется морозостойкость наружных 12 см однослойной кладки.
    Цитирую СП 15.13330 "Каменные и армокаменные конструкции":

    5.2 Проектные марки по морозостойкости каменных материалов для наружной части стен (на толщину 12 см) и для фундаментов (на всю толщину), возводимых во всех строительно-климатических зонах, в зависимости от предполагаемого срока службы конструкций, но не менее 100, 50 и 25 лет, приведены в 5.3 и таблице 1.

    Полнотелый кирпич начинает разрушаться снаружи. Если сбить отслаивающиеся наружные слои, внутри однослойных стен мы обнаружим еще вполне бодренький материал. Это свидетельствует о том, что в однослойных стенах помещений с нормальным режимом эксплуатации влиянием конденсации в толще стен можно пренебречь. Нормативные требования это пренебрежение подтверждают.
    В современных стенах из ГБ, ККК без наружной штукатурки тоже можно пренебрегать конденсацией, а при наличии штукатурки - тщательно проверять расчетную влажность слоя кладки толщиной 20 мм непосредственно под штукатуркой. Если проблемы и возникают при кривом выборе отделки, то именно там. #809 , 14.08.16

    ArtKs сказал(а):

    Кремлевская стена плохой пример, за ней следят.
    Пренебречь точно можно, если стена за утеплителем, она просто не замерзает.
    Но вопрос то был не совсем о том.
    Замерзание "абсолютно сухого"(условность) кирпича, как я понимаю ему не вредит.
    Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.
    Влага приходящая из дома, влага абсорбируемая из воздуха, намокание из-за дождя?
    Какую долю составляет каждый из источников? Что главная причина, а чем можно пренебречь?
    Какой вообще механизм разрушения кирпича?
    Может это где-то в литературе описано?

    В общем случае долговечность материалов определяется их физическими свойствами (пористость, "гидрофобность", теплопроводность, радиационная стойкость); физико-механическими (прочность каркаса (структуры) материала) и химическими свойствами (стойкость к разрушающим химическим реакциям).

    1. Пористость влияет на многие свойства материала. Для большинства материалов напрямую влияет на влагопроницаемость (паропроницаемость) и максимальное влагонакопление. Более легкий (менее плотный) кирпич как правило более влагопроницаем и имеет меньшую морозостойкость. Пористость зависит от состава глин и способа изготовления (формовки, сушки и обжига). Силикатный или прессованный кирпич отличается по процессу изготовления, их пористость так же зависит исходных материалов и технологии изготовления.

    Для керамического кирпича важнейшим этапом является термообработка. Из одного и того же состава можно получить существенно отличающийся по прочности и морозостойкости кирпич.

    2. "Гидрофобность" не рассматривается как отдельное свойство в долговечности, обычно исследуют сорбционную и эксплуатационную влажности, скорость влагонакопления и сушки материала, максимальное водопоглощение. Так или иначе эти свойства связаны с пористостью и строением "порового материала".

    Если грубо, то чем меньше и медленнее воды набирает материал, и чем быстрее он ее отдает, тем выше будет его долговечность. Например, сорбционная влажность качественного керамического кирпича при относительной влажности 97% не превышает 2%. Высоленный, пористый кирпич может насосать из атмосферы до 15%! Естественно, что разрушение такого материала произойдет гораздо быстрее.

    Для защиты старых кладок используют специальные краски, гидрофобные покрытия (если нужно сохранить естественный вид) или если эстетика потеряна, закрывают их штукатуркой или плиткой. Если погулять по центру Москвы, можно увидеть все три варианта защиты. Но некоторые довольно старые кирпичные стены, по моему, стоят "как есть".

    3. Низкая теплопроводность в определенных конструктивных решениях является источником дополнительных механических нагрузок, связанных с тепловым расширением материала. Это наведенное свойство, т. е. не свойство, присущее самому материалу, но мир несовершенен. Если взять, например, стену кирпич-утеплитель-кирпич, то фактически в такой стене будет разрушаться только утеплитель. К сожалению, не только долговечность полимерного утеплителя несопоставима с долговечностью кирпича. Минеральная вата, теплоизоляционный газобетон - все придет в негодность гораздо раньше несущей стены из кирпича и клинкерной облицовки. Любой материал, кроме быть может пеностекла, в такой конструкции уступит кирпичу. Если взять однородную стену из кирпича или газобетона, то она разрушится гораздо быстрее, по сравнению со стеной с меньшим перепадом температур. Тонкая однородная кирпичная стена наружного ограждения проживет меньше, чем толстая.

    4. Радиационная стойкость - как правило подразумевается защита от солнечного излучения. Разрушению от солнца подвержены в первую очередь органические материалы. Также следует помнить, что южные стороны домов в большей степени подвержены разрушению. Большее количество переходов через 0, нагрев до более высоких температур летом. Если кирпич имеет имеет высокую сорбционную влажность, это будет иметь значение.

    5. Механическая прочность является одним из ключевых факторов долговечности наряду с морозостойкостью. Способность материала противостоять как краткосрочным так и долгосрочным нагрузкам существенно увеличивает долговечность материала. Кирпич более высокой марки, полученный по близкому техпроцессу и из близких материалов, более долговечен.

    6. Химическая стойкость подразумевает возможность сопротивлению процессам окисления, выщелачивания, карбонизации и т. п. Качественный кирпич практически инертен к атмосферным химическим воздействиям и поэтому обладает очень большой долговечностью (сотни лет). Однако нужно не забывать, что кирпич кладется на раствор. При кладке здания с проектной долговечностью
    более 100 лет, кладочный раствор должен также отвечать определенным требованиям по прочности, пористости и химической стойкости.

    Я специально не пишу о конструктивных особенностях наружных ограждений из кирпича, которые снижают срок их службы. Пока вроде бы речь идет только об особенностях самого материла "керамический кирпич".

    Извините за длинный пост, но по сравнению с книжками по направлению, это просто коротенькая записочка. #810 , 14.08.16

    Константин Я. сказал(а):

    9.3 Не требуется проверять на выполнение данных норм по паропроницанию следующие ограждающие конструкции:

    Б) двухслойные наружные стены помещений с сухим и нормальным режимами, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг."

    Правильно ли я понимаю, что если стена из ГБ имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг, то практически невозможно сделать "кривой выбор" наружной отделки?

    Нет, Константин, ситуация иная. Газобетон со штукатуркой уже не однослойная конструкция.
    Тезис про 1,6 м2·ч·Па/мг был условно верен при материалах плотностью от 1000 кг/куб.м. Сейчас надо все таки проверять влагонакопление за слоем отделки.
    Здесь какая ситуация: в среднем по толще стены недопустимого влагонакопления не произойдет, но слой за отделкой легко может переувлажниться и намерзающим льдом разрушиться.
    Оговорюсь, не встречал таких проблем на стенах, которые отделывались после начального подсыхания хотя бы в полгода.

Точка росы – это такая температура среды, при которой вода, находящаяся в воздухе, превращается из газа в жидкость (конденсируется).

Влажность воздуха зависит от его температуры. При одинаковом количестве водяного пара, холодный воздух будет более влажным, чем теплый.

Если мы будем плавно охлаждать воздух, то наступит такая температура, при которой влажность станет стопроцентной. В этот момент выпадает жидкий конденсат (роса). Такая температура называется точкой росы.

Температура и влажность воздуха на внутренней грани стены или кровли дома значительно выше, чем на улице. Это приводит к тому самому плавному понижению температуры внутри конструкции. При неграмотном подборе утеплителя, появляется вероятность, что внутри стены будет такая влажность и температура, при которой образуется конденсат .

Положение точки росы в конструкции стены зависит от того:

  • насколько тепло внутри помещения;
  • насколько холодно на улице;
  • ширины и теплопроводности строительных материалов, из которых состоит стена;
  • влажности в помещении;
  • влажности воздуха на улице.

Выясним, как меняется положение точки росы в разных ситуациях.


В стене без утеплителя
. Если стена вашего дома вообще не утеплена, то температура внутри ее конструкции будет плавно понижаться от внутренней грани к наружной.

А точка росы тогда может располагаться : в середине стены; близко к наружной грани стены; близко к внутренней грани стены.

В стене с утеплителем снаружи . В месте, где расположен утеплитель достаточной толщины, будет наблюдаться резкий перепад температур. Тогда точка росы окажется внутри утеплителя, а вся стена будет теплой.

Если утеплитель обладает слишком маленькой толщиной, то точка росы может сместиться к середине стены или к ее внутреннему краю.

В стене с утеплителем внутри . В таком случае, так же будет наблюдаться резкий скачок температуры в месте, где расположен утеплитель. При этом стена окажется в холодной зоне и точка росы сместится к внутреннему краю стены.

Чтобы найти температуру точки росы необходимо воспользоваться таблицей.

Для этого найдите в таблице соответствующую комнатную температуру и на пересечение с текущими показания влажности будет находится температура точки росы.

Какие существуют методы определения точки росы расскажет статья "Определение точки росы: секреты и нюансы".

Последствия неграмотного выбора и расчета

Точка росы, возникающая внутри материала, приводит к его увлажнению. Намокание стен имеет следующие последствия:

  • Увлажненный бетон и кирпич обладают меньшими теплозащитными свойствами.
  • На мокрой стене может развиться грибок и плесень.
  • В помещении с влажными стенами будет неприятный микроклимат.
  • Если влага внутри стены замерзнет и кристаллизуется, то ее кристаллы будут разрушать материал конструкции. Несколько циклов замораживания и оттаивания могут привести к потере прочности материала.
  • Для утеплителя влажность опасна ухудшением его теплозащитных свойств.

Совет! Влажный утеплитель легко просушить, если устроить специальные продухи. Именно по такой технологии работает вентилируемый фасад.

Расчет утеплителя сводится к подбору его толщины в каждом конкретном случае. При этом расчете необходимо обращать внимание на положение точки росы. Неправильная толщина слоя утепляющего материала может привезти к намоканию и промерзанию всей конструкции стены.

Для того чтобы избежать намокания несущей конструкции стены, лучше всего размещать утеплитель снаружи. В этом случае необходимо предусмотреть, хорошую вентилируемость слоя утеплителя, а так же его защиту от непогоды.

Размещать утеплитель внутри помещения можно лишь при низкой влажности воздуха или небольшом перепаде температур внутри и снаружи вашего помещения.

Точка росы – что это и как ее определение в стене смотрите на видео:

О температуре точки росы посмотрите в видео-уроке:

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные