Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Сейчас на прилавках магазинов громадный выбор бытовых увлажнителей, начиная от простейшего "бублика", который плавает в стакане с водой и запитан от порта USB, и заканчивая навороченными автоматикой дорогостоящие офисные увлажнители. В основном большая часть такого товара приходит к нам из соседнего Китая, и поэтому о долговечности девайса не стоит говорить. Например, у меня 5 литровый бытовой увлажнитель в грибнице проработал всего полгода, после этого ни одна мастерская не смогла вернуть его к жизни. Хорошо, что для пробы я выписал из Китая небольшую партию mist maker (мист мейкер), это небольшие ультразвуковые генераторы тумана, к которым нужен только блок питания на 24 вольта. Выглядят они вот так:

Разница между двумя этими моделями только в диаметре рабочей пластины, покрытой керамикой, на первом фото диаметр 20мм на втором 16мм, и естественно первая работает намного эффективней. Пришлось сделать только поплавок, и взять ведро под ёмкость, где плавает мист мейкер. Работает надёжно, я подливаю только воду. Немного о воде - вода должна быть как можно чище, идеальный вариант - дистиллированная, от воды зависит и долговечность керамической пластины, и второе - какие соли находятся в воде, то при работе ультразвука, все эти соли вместе с туманом будут плавать в вашем помещении, покрывая всё тонким белым налётом. Как сделать увлажнитель, я рассказал и показал в видео.


Не спорю, можно купить уже готовый ультразвуковой увлажнитель было бы быстрее, но у меня так сложилось по запчастям, что он вышел сам собой. В статье я покажу, как и из чего сделал его я, а в конце, расскажу, как бы я сделал его сейчас, основываясь на опыте теперешней обкатке.
В марте ко мне прибыл ультразвуковой распылитель в пластмассовом корпусе, я специально готовился к лету, конструкция была собрана, но однажды, встроенный в ультразвуковою головку датчик уровня не сработал, и как следствие работы на сухую – корпус датчика оплавился, а местами и прогорел, правда, заметил я это не сразу - обошлось.
Неделю назад, ко мне пришла ультразвуковая головка уже в металлическом корпусе, а значит, всю конструкцию мне пришлось разобрать и пересобрать заново.

Понадобится


В наличии у меня были:
  • - офисное ведро емкостью 10 литров;
  • - блок питания на 12 вольт;
  • - ультразвуковой распылитель в металлическом корпусе;
  • - черная монтажная коробочка размерами 100 x 60 x 25 мм;
  • - любой повышающий модуль, у меня оказался модуль Xl6009;
  • - регулятор оборотов 12 вольт;
  • - турбинка;
  • - выключатель питания, несколько гнезд и штекеров к ним;
  • - подручная мелочь появлялась в процессе сборки;
  • - а также – корпус от неисправного регулятора оборотов – его вы увидите далее.

Визуальная схема соединения


Мне пришлось постараться, что бы все это не выглядело кашей и было удобным для восприятия.
  • - входные 12 вольт повышается модулем до 22 вольт и подается на ультразвуковой распылитель;
  • - так же, входные 12 вольт подаются на регулирующий обороты вентилятора блок;
  • - оба они соединены параллельно и через общий выключатель питания подключены к входному гнезду.


Готовый регулятор оборотов сразу пришел ко мне неисправным, и как бывает, отложился в кучку «до лучших времен», в дело пошел его корпус с четырьмя удобными отверстиями для крепления. Вы видите, что случилось с начинкой. Некоторое время, ток был настолько высок, что проводки, ведущие к гнезду на ультразвуковую головку, прогорели и расплавились. Однако, оба модуля оказались исправными и потребовалось только заменить проводку.


В торце офисной корзины, мной были просверлены четыре отверстия для установки винтов к которым крепился блок управления, еще ниже, вы видите отверстие для пропуска провода идущего к ультразвуковой головке.
Первый вариант, я собирал второпях, и такое решение выявило свои недостатки. Если взглянуть внутрь корзины, то видно, что головки винтов подвергались коррозии.


Что бы избавиться от ржавчины, потребовалось ее преобразовать тампонами смоченными крепким раствором пищевой лимонной кислоты


После чистки зубной щеточкой и сушки, головки были залиты прозрачным акриловым клеем из строительного магазина.

Узел вентилятора

Он должен быть полностью защищен от брызг и после короткого обдумывания, я решил применить центробежную турбинку которую вклеил в черную пластиковую коробочку на полосках двустороннего монтажного скотча на основе 1 мм.


Через меньшее отверстие на нижней крышке коробочки, воздух подается внутрь корзины. Обратите внимание на то что, заборное отверстие на верхней стороне коробочки и выпускное на нижней, будут распложены оппозитно друг другу. Тем самым, никакие брызги не смогут добраться до двигателя турбины. По периметру получившегося узла, я наклеил уплотняющую ленту, применяемую герметизации проемов открывающихся пластиковых окон, а к самой турбине, был подпаян отрезок витого шнура со штекеров на конце. Паянные контакты были герметизированы горячим клеем.

Узел крышки

Обратная сторона.


Крышка офисного ведра, как вы знаете, снабжена вращающимся клапаном, и он, доставил мне больше всего неудобств.
  • - вначале, я наметил и проделал отверстие для выхода водяного тумана;
  • - затем, я дремлем вырезал прямоугольное окно для узла вентилятора;
  • - чтобы застопорить клапан, по всей внутренней площади крышки, я на водостойкий клей наклеил заготовку из поролона;
  • - заготовку, для того чтобы она не травила пар, пришлось хорошо увлажнить тем же клеем в несколько приемов;
  • - после высыхания, на почти водоотталкивающую поролоновую заготовку, я наклеил заготовку из обрезка линолеума.
В срезе, вы можете видеть, какой сандвич вышел:


Крышка с лицевой стороны. В отверстие для выпуска мороси, вставлена половинка от шоколадного яйца. С некоторым усилием, она может вращаться. Советую прожечь в ней отверстия только на одной стороне, чтобы поток холодного пара можно было направить в сторону от узла вентилятора и воздухозаборного отверстия.


В итоге, общий вид отмытой офисной корзины без установленного узла вентилятора вот такой.
Для придания менее колхозного вида, по контуру щели вращающегося клапана я наклеил оставшуюся гермоленту.

Узел поплавка

Круглый поплавок я вырезал из вспененного полиэтилена, в раму из такого материала «одевают» дисплеи и телевизоры.
В поплавок вставлен стаканчик из-под йогурта, в который, будет вставлен ультразвуковой распылитель.


Первые испытания тут же показали, что ультразвуковая головка должна быть утоплена под поверхностью воды, на глубину фаланги пальца, но при этом, отдельные брызги таки вылетали из фонтанчика тумана. Потому пришлось подумать о каплегасителе. Он сделан из крышки баллона с монтажной пеной, и на счастье, он имел ушко с отверстием для пеноподающей трубки.


Следы ржавчины объясняются тем, что вместо нейлоновых кабельных стяжек, я использовал металлический штифт, и после замачивания в лимонной кислоте, при окончательной сборке, я стану применять именно их.
Собственно, всё – уборка закончена, далее пойдет серия фотографий с пояснениями, на которых вы увидите процесс окончательной компиляции запчастей.
За ней, я поделюсь мыслями о том, что я сделал бы иначе и видео работы увлажнителя в сборе.

Узел электроники

Провода были перепаяны. При этом, слева, вы видите гнездо для подключения вентиля торного блока.


И крышка закрыта. Два нижних гнезда. Правое, выход на ультразвуковую головку, левое гнездо предназначается для подсоединения внешнего блока питания +12 вольт.

Ультразвуковая головка и система поплавка

Мне пришлось обрезать штатный провод из-за его плохой гибкости и срастить его с гибкими проводниками в силиконовой оболочке. Места пайки были щедро герметизированы горячим клеем. И, обратите внимание – провод пропущен через силиконовую крышечку которой укупоривают баночки с антибиотиками.
Вы видели сквозное отверстие в офисной корзине, крышечка с проводом по ее центру будет вставлена в него, что послужит не только препятствием для выхода мелкодисперсного тумана, но и позволит извлекать весь этот узел не перекусывая проводников.


А вот плавающую платформу пришлось полностью изменить. Металлический распылитель оказался тяжелым для нее и плавучесть была отрицательная.
Я взял, как вы видите пенопласт, мне повезло, это плотный пенопласт от пенопластовой же коробочки размером по ширине 24 мм и по сторонам 100 на 115 мм.
Корзиночку для ультразвуковой головки тоже пришлось заменить на целый стаканчик из-под йогурта. Распылитель был плотно вдавлен в стаканчик до дна, и паяльником, были прожжены отверстия для доступа воды внутрь этой небольшой емкости.
Вам придется экспериментальным путем выяснить плавучесть платформы, но скажу сразу – альтернативы пенопласту – нет.

Тестовый прогон

В корзину налита вода, ультразвуковой узел опущен на поверхность, штекер ультразвукового узла через силиконовую крышечку прошел стенку офисной корзины насквозь. Так же вы видите, что по внутреннему периметру корзины, наклеен всё тот же герметизирующий шнур.


Система на средних оборотах.


Потребление системы составило на максимальных оборотах вентилятора и при внешнем источнике питания 12V - 1.92A. Без вентилятора 1.72A.
Чтобы я изменил теперь.
Во-первых – крышка, мне кажется вышла не совсем удачно. Поднимитесь вверх до картинки, на которой я показал перевернутую крышку. Будет лучше, если из цельного листа пластика, вы вырежете заготовку размеров с внутренний бортик (ступеньку) крышки. После проклейки и проверки на герметизацию, узел вентилятора можно разместить в образовавшемся месте под вращающимся клапаном крышки офисной корзины. Думаю, что там же хватило места и для другой электроники. Какой?
Например – датчика влажности. Есть модули с датчиками влажности совмещенными с реле, и после калибровки и установки модуля на влажность 40% можно будет забыть об играх с выключателем. Влажность всегда будет автоматически поддерживаться на оптимальном уровне.
Во-вторых, - система безопасности. Я догадываюсь, отчего прогорел прежний генератор тумана в пластиковом корпусе. На нем (как и на этом), в виде скобки установлен датчик емкости и вероятно, генератор тумана из-за своей легкости перекосило – датчик емкости оказался в воде, а пьезо-мембрана оказалась частью в воздухе, что и привело к перегреву всей головки. На микросхеме TTP223 выпускают компактные датчики емкости, его можно и нужно наклеить на минимальном уровне воды в корзине с внешней стороны, при котором гарантированно, эта ультразвуковая головка, пусть и тяжелая, но все равно, была бы в воде. Сам датчик, может управлять повышающим модулем, у повышающего модуля есть управляемый вход.
В-третьих, повышающий модуль может быть и дешевле, не обязательно такой, который использовал я – больше ничего под рукой не было.
Примерная стоимость всего набора:
  • - офисная корзина – 2.5 долларов.
  • - ультразвуковой распылитель – 5.6 долларов.
  • - повышающий модуль Xl6009, который может быть и другим - 0.80 долларов.
  • - турбинка – 1.43 долларов.
  • - черная коробочка 100x60x25 мм – 1.08 долларов.
  • - готовый регулятор оборотов – 1.32 долларов.
Итого: примерно 12 долларов.
Все остальное у меня было в наличии. Я считаю, что эта самоделка, не претендующая на центр праздничного стола как самовар, тем не менее, имеет все необходимые потребительские качества, которые за эти деньги, в готовом варианте скорее всего не найти.
Спасибо за внимание.
Руслан.

Для тестирования одного из устройств нам понадобился генератор «настоящего» дыма. Настоящего в том смысле, что нас не устраивал тот водно-глицериновый туман, который производят генераторы «тяжелого» дыма, широко используемые в шоу-бизнесе. Вот взвешенные мельчайшие частички сажи - это уже настоящий дым, который, как известно, образуется при горении чего-то углеродсодержащего в условиях некоторого дефицита окислителя.
Поиск по Интернетам дал результат, были найдены несколько доступных для изготовления на коленке конструкций такого типа устройств, используемых в основном для поиска трещин и щелей в газораспределительных системах автомобилей с ДВС. Одна из них с некоторыми модификациями и была взята за основу. Собственно, что получилось:

Принцип действия понятен любому, кто хоть раз в жизни перегревал сковородку с маслом - дыма получается очень много. Так и в этом генераторе - в камеру, где сильно-сильно подогревается масло, закачивается воздух, который выходит из камеры уже с образовавшимся дымом. В данном случае мы используем вазелиновое масло (купленное в аптеке), как самое безопасное с точки зрения образования вредных продуктов сгорания. Рассмотрим устройство камеры:


Нагревательным элементом в ней служит свеча накаливания Febi 15956 для дизельных двигателей, приобретенная в известном магазине запчастей к иномаркам. Эта штука имеет резьбу M12x1,25, что близко к сантехническому варианту 1/4, она короткая, что уменьшает габариты камеры, и стоит относительно недорого.


Сама камера состоит из отрезка (сгона) дюймовой трубы, футорки-переходника с 1/4" на 1/2", переходника с 1/2" на 1" и крышки-заглушки на 1". Стыки уплотнены сантехнической нитью для герметизации резьбовых соединений. Все это было приобретено в одном хозяйственно-строительном гипермаркете. Воздух в камеру подается и выходит через две медные трубочки с нарезанной резьбой М5. Они ввинчиваются в два резьбовых отверстия в крышке и фиксируются гайками с подложенными шайбами. Трубочка подачи воздуха опускается в камеру ниже. А чтобы в выходящем воздухе было меньше капелек масла, он проходит через кусочек стальной мочалки для отдирания посуды:


Закреплена камера на куске доски с помощью уголков, хомута и резиновой прокладки:


Подается воздух от автомобильного компрессора. Изначально предполагалось, что накал свечи нужно будет регулировать, для чего была собрана схема с ШИМ-регулятором мощности на популярном таймере 555:


Впрочем, при наладке работы генератора этот регулятор был выкручен на максимум и в дальнейшем работал скорее просто в качестве соединителя. Питаются компрессор и свеча накаливания от обычного компьютерного блока питания. Фотография ниже сделана во время работы генератора. На ней можно заметить белесый конус, выходящий из открытой трубочки, это и есть требуемый дым:


Дым пахнет только что потухшей свечкой и его запах относительно быстро выветривается.
Также для теста нам потребовалось определять концентрацию этого дыма в воздухе, как мы это делали, будет рассказано в следующий раз.

Несколько дней назад поступил очередной заказ. Покупатель хотел заказать мощную ультразвуковую пушку для борьбы с пьяной молодежью, для которых день начинается ночью, когда все нормальные люди спят. Недолго думая выбрал проверенную схему мощного ультразвукового излучателя. Сама пушка построена всего на одной микросхеме стандартной логике.

Подойдут буквально любые аналогичные микросхемы, содержащие 6 логических инверторов. В нашем случае применена микросхема CD4049 (HEF4049), которая успешно может быть заменена на отечественную - К561ЛН2, только нужно обратить внимание на цоколевку, поскольку К561ЛН2 отличается от использованной некоторыми выводами.


Поскольку схема достаточно простая, то может быть реализована на макетной плате или навесным образом. Усилитель собран на комплементарных парах КТ816/817, за счет применения этих ключей, мощность нашей пушки составляет 10-12 Ватт.


В качестве излучателя желательно использовать высокочастотные головки типа 10 ГДВ или импорт, не советуется использовать пьезоизлучатель.



Корпус - от китайского электронного трансформатора 10-50 ватт, пришлось переделывать, поскольку плата не вместилась.




За частоту отвечает конденсатор 1,5нФ (который потом заменил на 3,9 нФ, поскольку с указанным в схеме конденсатором нижняя грань частот ровна 20кГц, а с такой заменой частоту можно настроить в пределах 10-30кГц) и переменный резистор (в итоге, настройку делают вращением этого резистора).


Базовые резисторы можно заменить на 2.2кОм, которые являются более распространенными, чем те, которые указаны в схеме. Питается такой излучатель от стабилизированного блока питания на 5 Вольт с током 1 А (диапазон питающих напряжений 3,7-9 Вольт).



К туману у каждого человека свое отношение. Для автомобилистов он, скорее, досадное атмосферное явление. Для ландшафтных дизайнеров, напротив, замечательное средство украсить загородный участок. Кто-то любуется волшебной пеленой, поднимающейся над полями-озерами. А кто-то опасливо ежится, вспоминая мистического «гостя» из одноименной повести «Короля ужасов».

А вот для жителя Южноуральска туман – это способ ускорить рост садовых растений и собрать богатый урожай. Александра Аржевитина хорошо знают дачники Челябинской области. Он уже много лет конструирует различные устройства для сада и огорода. Своими руками он построил автоматизированную теплицу-розарий. На его участке работает самодельный насос, который качает воду из колодца. На огороде трудится чудо-мотоблок. Скорость и грузоподъемность машины гораздо выше заводских аналогов.

Очередная разработка Александра – генератор тумана – 76-я по счету. Устройство создает благоприятные условия для ускоренного роста растений. Черенки быстро укореняются благодаря постоянному уровню влажности. И происходит это, в зависимости от культуры, уже спустя две-три недели.

Интересно, что разработка Александра – это лишь усовершенствованный народный метод выращивания саженцев. Раньше растения укореняли, поместив черенки под банку с влажной ватой и песком. Спустя несколько месяцев появлялись корешки. Мастер решил, что процесс можно значительно ускорить и облегчить.

Название его изобретения описывает все его возможности: «Автономная автоматическая туманообразующая установка для зеленого черенкования АРС-76» (сокращенно от Аржевитина Саши). Автономная – потому что ее можно оставить без присмотра, не опасаясь, что растения засохнут. Заряда 55-амперного аккумулятора хватает на пару суток. Все, что нужно – это следить за уровнем заряда и периодически доливать воду в ведро. Установка будет делать свое дело, независимо от наличия электричества.

Генератор тумана работает в автоматическом режиме. Разработанный Александром датчик реагирует на малейшие изменения погоды, включая и выключая распылители. А их в туманообразователе – 16 штук. В жару установка работает на полную мощность. Прохладным утром влаги для орошения выделяется меньше. В облачные дни туманная активность также снижена.

Интересен и тот факт, что установка изготовлена из подручных материалов. Двигатель взят от старых «Жигулей». Распылители сделаны из крышек от майонезных упаковок. Трубки с миллиметровым отверстием вырезаны из жестяной пивной банки. Александр надел на них термоусадочную трубку и получил форсунку-распылитель.

Уже принес его создателю немалую пользу. Садовод вырастил новые сорта винограда. Профессиональный цветовод, Александр давно занимается выращиванием цветочного посадочного материала, который поставляет в магазины. Свое устройство он планирует испробовать и для размножения роз – своих любимых цветов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные