Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные


Рис. 5.4.

Требования к разрабатываемой ПС, определенные на стадиях формирования и анализа, строго документируются в виде ТЗ и фиксируются на все время разработки проекта. Каждая стадия завершается выпуском полного комплекта документации (ТЗ, ЭП, ТП, РП), достаточной для того, чтобы разработка могла быть продолжена другой командой разработчиков. Критерием качества разработки при таком подходе является точность выполнения спецификаций ТЗ. Основное внимание разработчиков сосредоточивается на достижении оптимальных значений технических характеристик разрабатываемой ПС – производительности, объема занимаемой памяти и др.

Преимущества каскадной модели :

  • на каждой стадии формируется законченный набор проектной документации, отвечающей критериям полноты и согласованности;
  • выполняемые в логической последовательности стадии работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадный подход хорошо зарекомендовал себя при построении ПС, для которых в самом начале проекта можно полно и четко сформулировать все требования. Пока все это контролируется стандартами и различными комиссиями госприемки, схема работает хорошо.

Недостатки каскадной модели :

  • выявление и устранение ошибок производится только на стадии тестирования, которое может существенно растянуться;
  • реальные проекты часто требуют отклонения от стандартной последовательности шагов;
  • цикл основан на точной формулировке исходных требований к ПС, реально в начале проекта требования заказчика определены лишь частично;
  • результаты работ доступны заказчику только по завершении проекта.

Итерационная модель ЖЦ ПС

С ростом коммерческих проектов выяснилось, что не всегда удается детально проработать проект будущей системы, поскольку многие аспекты ее функционирования в динамических сферах деятельности (бизнес) меняются, пока система создается. Потребовалось изменить процесс разработки так, чтобы гарантировать внесение необходимых исправлений после завершения какого-либо этапа разработки. Так появилась итерационная модель ЖЦ ПС, называемая моделью с промежуточным контролем или моделью с циклическим повторением фаз.


Рис. 5.5.


Рис. 5.6.

В такой ситуации огромное значение приобретает этап формулирования требований, составление спецификаций и создание плана системы. Программные архитекторы несут личную ответственность за все последующие изменения проектных решений. Объем документации исчисляется тысячами страниц, число утверждающих заседаний огромно. Многие проекты так никогда и не покидают этап планирования, впав в " паралич анализа". Одним из возможных путей исключения подобных ситуаций является макетирование (прототипирование).

Макетирование

Часто заказчик не может сформулировать требования по вводу, обработке или выводу данных для будущего программного продукта. Разработчик может сомневаться в приспособленности продукта к операционной системе, в форме диалога с пользователем или эффективности алгоритма. В таких случаях целесообразно использовать макетирование. Основная цель макетирования – снять неопределенность в требованиях заказчика. Макетирование (прототипирование) – процесс создания модели требуемого продукта.

Модель может принимать следующие формы.

  1. Бумажный макет (рисованная схема человеко-машинного диалога) или макет на основе ПК.
  2. Работающий макет, реализующий некоторую часть требуемых функций.
  3. Существующая программа, характеристики которой должны быть улучшены.

Как показано на рис.5.7 , макетирование основывается на многократном повторении итераций, в которых участвуют заказчик и разработчик.


Рис. 5.7.

Последовательность действий при макетировании представлена на рис.5.8 . Макетирование начинается со сбора и уточнения требований к создаваемой программной системе. Разработчик и заказчик совместно определяют цели ПО, устанавливают, какие требования известны, а какие предстоит доопределить. Затем выполняется быстрое проектирование. В нем сосредотачиваются на характеристиках, которые должны быть видимыми пользователю. Быстрое проектирование приводит к построению макета. Макет оценивается заказчиком и используется для уточнения требований к ПО. Итерации продолжаются до тех пор, пока макет не выявит все требования заказчика и даст возможность разработчику понять, что должно быть сделано.

Достоинства макетирования – возможность обеспечения определения полных требований к системе. Недостатки макетирования:

  • заказчик может принять макет за продукт;
  • разработчик может принять макет за продукт.

Следует пояснить суть недостатков. Когда заказчик видит работающую версию ПС, он перестает сознавать, что в погоне за работающим вариантом ПС оставлены нерешенными многие вопросы качества и удобства сопровождения системы. Когда же заказчику об этом говорит разработчик, то ответом может быть возмущение и требование скорейшего превращения макета в рабочий продукт. Это отрицательно сказывается на управлении разработкой ПО.


Рис. 5.8.

С другой стороны, для быстрого получения работающего макета разработчик часто идет на определенные компромиссы. Например, могут использоваться не самые подходящие языки программирования или операционная система. Для простой демонстрации может применяться неэффективный (простой) алгоритм. Спустя некоторое время разработчик забывает о причинах, по которым эти средства не подходят. В результате далеко не идеальный выбранный вариант интегрируется в систему.

Прежде чем рассматривать другие модели ЖЦ ПО, которые пришли на смену каскадной модели , следует остановиться на стратегиях конструирования программных систем. Именно стратегия конструирования ПО во многом определяет модель ЖЦ ПО.

Стратегии конструирования ПО

Существует три стратегии конструирования программных систем:

  • однократный проход (каскадная стратегия, рассмотренная выше) – линейная последовательность этапов конструирования;
  • инкрементная стратегия. В начале процесса определяются все пользовательские и системные требования, оставшаяся часть конструирования выполняется в виде последовательности версий. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система;
  • эволюционная стратегия. Система также строится в виде последовательности версий, но в начале процесса определяются не все требования. Требования уточняются в результате разработки версий. Характеристики стратегий конструирования ПО с соответствии с требованиями стандарта IEEE/EIA 12207 приведены в

Разработка ПО невозможна без понимания так называемого жизненного цикла программ. Рядовому юзеру это, может быть, и не нужно знать, но основные стандарты желательно усвоить (далее будет сказано, зачем это нужно).

Жизненный цикл что это такое в формальном понимании?

Под жизненным циклом любого принято понимать время его существования, начиная со стадии разработки и до момента полного отказа от использования в выбранной сфере применения вплоть до полного изъятия приложения из обихода.

Говоря простым языком, информационные системы в виде программ, баз данных или даже «операционок» являются востребованными только в случае актуальности данных и возможностей, ними предоставляемых.

Считается, что определение жизненного цикла ни в коей мере не применяется к тестовым приложениям, например, к бета-версиям, которые являются самыми неустойчивыми в работе. Сам же жизненный цикл ПО зависит от множества факторов, среди которых одну из главных ролей играет среда, в которой программа будет использоваться. Однако можно выделить и общие условия, применяемые при определении понятия жизненного цикла.

Начальные требования

  • постановка задачи;
  • анализ взаимных требований будущего ПО к системе;
  • проектирование;
  • программирование;
  • кодирование и компиляция;
  • тестирование;
  • отладка;
  • внедрение и сопровождение программного продукта.

Разработка ПО состоит из всех вышеупомянутых стадий и не может обойтись хотя бы без одной из них. Но для контроля для таких процессов установлены специальные стандарты.

Стандарты процессов жизненного цикла программного обеспечения

Среди систем, предопределяющих условия и требования, предъявляемые к таким процессам, сегодня можно назвать только три основных:

  • ГОСТ 34.601-90;
  • ISO/IEC 12207:2008;
  • Oracle CDM.

Для второго международного стандарта имеется российский аналог. Это ГОСТ Р ИСО/МЭК 12207-2010, отвечающий за системную и программную инженерию. Но жизненный цикл программного обеспечения, описываемый в обоих правилах, является идентичным по сути. Объясняется это достаточно просто.

Виды ПО и апдейты

Они, кстати, для большинства ныне известных программ мультимедиа являются средствами сохранения основных параметров конфигурации. Использование ПО такого типа, конечно, является достаточно ограниченным, но понимание общих принципов работы с теми же медиаплеерами не повредит. И вот, почему.

По сути-то, в них жизненный цикл программного обеспечения заложен только на уровне срока обновления версии самого проигрывателя или установки кодеков и декодеров. А звуковые и видео транскодеры являются неотъемлемыми атрибутами любой аудио или видеосистемы.

Пример на основе программы FL Studio

Изначально виртуальная студия-секвенсор FL Studio имела название Fruity Loops. Жизненный цикл ПО в его первичной модификации истек, но приложение несколько трансформировалось и приобрело нынешний вид.

Если говорить об этапах жизненного цикла, сначала на стадии постановки задачи задавалось несколько обязательных условий:

  • создание барабанного модуля по типу ритм-машин вроде Yamaha RX, но с применением one-shot-сэмплов или секвенций в формате WAV, записанных в студиях вживую;
  • интеграция в операционные системы Windows;
  • возможность экспорта проекта в форматах WAV, MP3 и OGG;
  • совместимость проектов с дополнительным приложением Fruity Tracks.

На стадии разработки были применены средства языков программирования «Си». Но платформа выглядела достаточно примитивно и не давала конечному пользователю необходимого качества звучания.

В связи с этим, на стадии тестирования и отладки разработчикам пришлось пойти по пути немецкой корпорации Steinberg и применить в требованиях к основному звуковому драйверу поддержку режима Full Duplex. Качество саунда стало выше и позволило изменять темп, высоту тона и накладывать дополнительные FX-эффекты в режиме реального времени.

Завершением жизненного цикла этого ПО принято считать выход первой официальной версии FL Studio, которая, в отличие от своих прародителей, обладала уже интерфейсом полноценного секвенсора с возможностью редактирования параметров на виртуальном 64-канальном микшерном пульте с неограниченным добавлением аудио-дорожек и MIDI-треков.

Этим не ограничилось. На стадии управления проектом была введена поддержка подключения плагинов формата VST (сначала второй, а потом и третьей версии), в свое время разработанного компанией Steinberg. Грубо говоря, любой виртуальный синтезатор, поддерживающий VST-host мог подключаться к программе.

Неудивительно, что вскоре любой композитор мог использовать аналоги «железных» моделей, например, полные комплекты звуков некогда популярного Korg M1. Дальше - больше. Применение модулей вроде Addictive Drums или универсального плагина Kontakt позволило воспроизводить живые звуки реальных инструментов, записанных со всеми оттенками артикуляции в профессиональных студиях.

При этом разработчики постарались добиться и максимального качества, создав поддержку для драйверов ASIO4ALL, которые оказались на голову выше режима Full Duplex. Соответственно, повысился и битрейт. На сегодняшний день качество экспортируемого звукового файла может составлять 320 кбит/с при частоте дискретизации 192 кГц. А это профессиональный звук.

Что же касается начальной версии, ее жизненный цикл можно было бы назвать полностью законченным, но такое утверждение является относительным, поскольку приложение только сменило название и обрело новые возможности.

Перспективы развития

Что собой представляют этапы жизненного цикла программного обеспечения, уже понятно. Но вот о развитии таких технологий стоит сказать отдельно.

Не нужно говорить, что любой разработчик программного обеспечения не заинтересован в создании мимолетного продукта, который едва ли удержится на рынке в течение нескольких лет. В перспективе все смотрят на долгосрочное его использование. Достигаться это может разными способами. Но, как правило, практически все они сводятся к выпуску обновлений или новых версий программ.

Даже в случае с ОС Windows такие тенденции можно заметить невооруженным взглядом. Вряд ли сегодня найдется хоть один юзер, использующий системы вроде модификаций 3.1, 95, 98 или Millennium. Их жизненный цикл закончился после выхода версии XP. Но вот серверные версии на основе технологий NT все еще актуальны. Даже Windows 2000 на сегодняшний день является не только весьма актуальной, но и по некоторым параметрам установки или безопасности даже превосходящей самые новые разработки. То же самое касается системы NT 4.0, а также специализированной модификации Windows Server 2012.

Но по отношению именно к этим системам все равно заявлена поддержка на самом высоком уровне. А вот нашумевшая в свое время Vista явно испытывает закат цикла. Мало того, что она оказалась недоработанной, так еще и ошибок в ней самой и прорех в ее системе безопасности было столько, что остается только догадываться о том, как можно было выпустить на рынок программных продуктов такое несостоятельное решение.

Но если говорить о том, что развитие ПО любого типа (управляющего или прикладного) не стоит на месте, можно только Ведь сегодня дело касается не только компьютерных систем, а и мобильных устройств, в которых применяемые технологии зачастую опережают компьютерный сектор. Появление процессорных чипов на основе восьми ядер - чем не самый лучший пример? А ведь еще далеко не каждый ноутбук может похвастаться наличием такого «железа».

Некоторые дополнительные вопросы

Что же касается понимания жизненного цикла программного обеспечения, сказать, что он закончился в некоторый определенный момент времени, можно весьма условно, ведь программные продукты все равно имеют поддержку со стороны разработчиков, их создававших. Скорее окончание относится к устаревшим приложениям, которые не отвечают требованиям современных систем и не могут работать в их среде.

Но даже с учетом технического прогресса многие из них уже в ближайшее время могут оказаться несостоятельными. Вот тогда и придется принимать решение либо о выпуске обновлений, либо о полном пересмотре всей концепции, изначально заложенной в программный продукт. Отсюда - и новый цикл, предусматривающий изменение начальных условий, среды разработки, тестирования и возможного долгосрочного применения в определенной сфере.

Но в компьютерных технологиях сегодня отдается предпочтение развитию автоматизированных систем управления (АСУ), которые применяются на производстве. Даже операционные системы, в сравнении со специализированными программами, проигрывают.

Те же среды на основе Visual Basic остаются намного более популярными, нежели Windows-системы. А о прикладном ПО под UNIX-системы речь не идет вообще. Что говорить, если практически все коммуникационные сети тех же Соединенных Штатов работают исключительно на них. Кстати, системы вроде Linux и Android тоже изначально создавались именно на этой платформе. Поэтому, скорее всего, у UNIX перспектив намного больше, чем у остальных продуктов вместе взятых.

Вместо итога

Остается добавить, что в данном случае приведены только общие принципы и этапы жизненного цикла программного обеспечения. На самом деле даже начально поставленные задачи могут разниться очень существенно. Соответственно, различия могут наблюдаться и на остальных стадиях.

Но основные технологии разработки программных продуктов с их последующим сопровождением должны быть понятны. В остальном же следует учитывать и специфику создаваемого ПО, и среды, в которых оно предположительно должно работать, и возможности программ, предоставляемые конечному пользователю или производству, и многое другое.

К тому же, иногда жизненные циклы могут зависеть от актуальности средств разработки. Если, допустим, какой-то язык программирования устаревает, никто же не будет писать программы на его основе, и уж тем более - внедрять их в автоматизированные системы управления на производстве. Тут уже на первый план выходят даже не программисты, а маркетологи, которые должны своевременно реагировать на изменения компьютерного рынка. И таких специалистов в мире найдется не так уж и много. Высококвалифицированные кадры, способные держать руку на пульсе рынка, становятся наиболее востребованными. И именно они зачастую являются так называемыми «серыми кардиналами», от которых зависит успех или проигрыш определенного программного продукта в сфере IT.

Пусть они не всегда понимают суть программирования, зато четко способны определить модели жизненного цикла программного обеспечения и продолжительности времени их применения, исходя из мировых тенденций в этой области. Эффективный менеджмент зачастую дает более ощутимые результаты. Да хотя бы PR-технологии, реклама и т. д. Может какое-то приложение пользователю и не нужно, зато при условии его активного афиширования юзер установит его. Это уже, так сказать, подсознательный уровень (тот же эффект 25-го кадра, когда информация закладывается в сознание юзера независимо от него самого).

Конечно, такие технологии в мире являются запрещенными, однако многие из нас даже не догадываются о том, что они все равно могут использоваться и воздействовать на подсознание определенным способом. Чего только стоит «зомбирование» новостными каналами или интернет-сайтами, не говоря уже о применении более мощных средств, вроде воздействия инфразвуком (такое было применено в одной оперной постановке), вследствие чего человек может испытывать страх или неадекватные эмоции.

Возвращаясь к программному обеспечению, стоит добавить, что некоторые программы при запуске используют звуковой сигнал, привлекающий внимание юзера. И, как показывают исследования, такие приложения оказываются более жизнеспособными, в сравнении с другими программами. Естественно, увеличивается и жизненный цикл ПО, без разницы, какая функция на него возложена изначально. И этим, к сожалению, пользуются многие разработчики, что вызывает сомнения в законности таких методов.

Но не нам судить об этом. Возможно, в ближайшее время будут разработаны средства, определяющие такие угрозы. Пока это только теория, но, как считают некоторые аналитики и эксперты, до практического применения осталось совсем немного. Если уже создают копии нейронных сетей человеческого мозга, то что говорить?

3.2. Каскадная стратегия

Каскадная стратегия (однократный проход, водопадная или классическая модель) подразумевает линейную последовательность выполнения стадий создания информационной системы (рис.3.1). Другими словами, переход с одной стадии на следующую происходит только после того, как будет полностью завершена работа на текущей.

Рис.3.1. Каскадная стратегия

Данная модель применяется при разработке информационных систем, для которых в самом начале разработки можно достаточно точно и полно сформулировать все требования.

Достоинства модели:

На каждой стадии формируется законченный набор документации, программного и аппаратного обеспечения, отвечающий критериям полноты и согласованности;

Выполняемые в четкой последовательности стадии позволяют уверенно планировать сроки выполнения работ и соответствующие ресурсы (денежные, материальные и людские).

Недостатки модели:

Реальный процесс разработки информационной системы редко полностью укладывается в такую жесткую схему. Особенно это относится к разработке нетиповых и новаторских систем;

Основана на точной формулировке исходных требований к информационной системе. Реально в начале проекта требования заказчика определены лишь частично;

Основной недостаток – результаты разработки доступны заказчику только в конце проекта. В случае неточного изложения требований или их изменения в течение длительного периода создания ИС заказчик получает систему, не удовлетворяющую его потребностям.

3.3. Инкрементная стратегия

Инкрементная стратегия (англ. increment – увеличение, приращение) подразумевает разработку информационной системы с линейной последовательностью стадий, но в несколько инкрементов (версий), т. е. с запланированным улучшением продукта.

Рис.3.2. Инкрементная стратегия

В начале работы над проектом определяются все основные требования к системе, после чего выполняется ее разработка в виде последовательности версий. При этом каждая версия является законченным и работоспособным продуктом. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система.

Данная модель жизненного цикла характерна при разработке сложных и комплексных систем, для которых имеется четкое видение (как со стороны заказчика, так и со стороны разработчика) того, что собой должен представлять конечный результат (информационная система). Разработка версиями ведется в силу разного рода причин:

Отсутствия у заказчика возможности сразу профинансировать весь дорогостоящий проект;

Отсутствия у разработчика необходимых ресурсов для реализации сложного проекта в сжатые сроки;

Требований поэтапного внедрения и освоения продукта конечными пользователями. Внедрение всей системы сразу может вызвать у ее пользователей неприятие и только «затормозить» процесс перехода на новые технологии. Образно говоря, они могут просто «не переварить большой кусок, поэтому его надо измельчить и давать по частям».

Достоинства и недостатки этой стратегии такие же, как и у классической. Но в отличие от классической стратегии заказчик может раньше увидеть результаты. Уже по результатам разработки и внедрения первой версии он может незначительно изменить требования к разработке, отказаться от нее или предложить разработку более совершенного продукта с заключением нового договора.

3.4. Спиральная стратегия

Спиральная стратегия (эволюционная или итерационная модель, автор Барри Боэм, 1988 г.) подразумевает разработку в виде последовательности версий, но в начале проекта определены не все требования. Требования уточняются в результате разработки версий.

Рис. 3.3. Спиральная стратегия

Данная модель жизненного цикла характерна при разработке новаторских (нетиповых) систем. В начале работы над проектом у заказчика и разработчика нет четкого видения итогового продукта (требования не могут быть четко определены) или стопроцентной уверенности в успешной реализации проекта (риски очень велики). В связи с этим принимается решение разработки системы по частям с возможностью изменения требований или отказа от ее дальнейшего развития. Как видно из рис.3.3, развитие проекта может быть завершено не только после стадии внедрения, но и после стадии анализа риска.

Достоинства модели:

Позволяет быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований;

Допускает изменение требований при разработке информационной системы, что характерно для большинства разработок, в том числе и типовых;

Обеспечивает большую гибкость в управлении проектом;

Позволяет получить более надежную и устойчивую систему. По мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации;

Позволяет совершенствовать процесс разработки – анализ, проводимый в каждой итерации, позволяет проводить оценку того, что должно быть изменено в организации разработки, и улучшить ее на следующей итерации;

Уменьшаются риски заказчика. Заказчик может с минимальными для себя финансовыми потерями завершить развитие неперспективного проекта.

Недостатки модели:

Увеличивается неопределенность у разработчика в перспективах развития проекта. Этот недостаток вытекает из предыдущего достоинства модели;

Затруднены операции временного и ресурсного планирования всего проекта в целом. Для решения этой проблемы необходимо ввести временные ограничения на каждую из стадий жизненного цикла. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа выполнена. План составляется на основе статистических данных, полученных в предыдущих проектах и личного опыта разработчиков.

3.5. Сравнительный анализ моделей

Знание различных моделей жизненного цикла и умение их применять на практике необходимы любому руководителю проекта. Правильный выбор модели позволяет грамотно планировать объемы финансирования, сроки и ресурсы, необходимые для выполнения работ, сократить риски как разработчика, так и заказчика. Это способствует повышению авторитета (имиджа) разработчиков в глазах заказчика и в свою очередь оказывает влияние на перспективу дальнейшего сотрудничества с ним и другими заказчиками. Считать, что спиральная модель лучше остальных, неверно. Ведь на каждый проект заключается отдельный договор с определенной стоимостью. Заключать договор на большую сумму с неопределенным итоговым результатом заказчик никогда не будет (если только он не альтруист). В этом случае он предложит вложить вначале небольшую сумму в проект и уже по результатам первой версии (итерации) будет решать вопрос о заключении дополнительного договора на развитие системы.

Каждая из моделей имеет свои достоинства и недостатки, а также сферы применения в зависимости от специфики разрабатываемой системы, возможностей заказчика и разработчика и т. п. В табл. 3.1 приводится сравнительная характеристика рассмотренных выше моделей, которая должна помочь в выборе стратегии для конкретного проекта.

Таблица 3.1. Сравнение моделей жизненного цикла

Характеристика
проекта
Модель (стратегия)
Новизна разработки и обеспеченность ресурсами Типовой. Хорошо проработаны технология и методы решения задачи Нетиповой (новаторский).
Нетрадиционный для разработчика
Ресурсов заказчика и разработчика хватает для реализации проекта в сжатые сроки Ресурсов заказчика или разработчика не хватает для реализации проекта в сжатые сроки
Масштаб проекта Малые и средние проекты Средние и крупные проекты Любые проекты
Сроки выполнения проекта До года До нескольких лет. Разработка одной версии может занимать срок от нескольких недель до года
Заключение отдельных договоров на отдельные версии Заключается один договор. Версия и есть итоговый результат проекта На отдельную версию или несколько последовательных версий обычно заключается отдельный договор
Определение основных требований в начале проекта Да Да Нет
Изменение требований по мере развития проекта Нет Незначительное Да
Разработка итерациями (версиями) Нет Да Да
Распространение промежуточного ПО Нет Может быть Да

В табл. 3.1 не стоит рассматривать значения «Да» и «Нет» как жесткие требования. Например, незначительное изменение требований по мере развития проекта при использовании каскадной модели (например, добавление некоторых непредусмотренных сервисных функций) встречается не так уж редко и в случае их реализации способствует улучшению взаимоотношений между сторонами. Аналогично распространение промежуточного программного обеспечения при спиральной модели необязательно, а иногда даже вредно отражается на процессах внедрения и опытной эксплуатации системы.

При разработке системы под итоговым продуктом и промежуточным программным обеспечением согласно следует понимать:

- ревизию (исправительную или опытную) – любые оперативные изменения программного и информационного обеспечения, а также БД, необязательные в данный момент к передаче на объекты внедрения и связанные с устранением ошибок и усовершенствованием;

- модификацию – любые оперативные изменения программного и информационного обеспечения, а также БД, обязательные для передачи на объекты внедрения и обусловливающие изменение эксплуатационных характеристик без изменения функций (предусмотренных ), а также изменения, связанные с устранением ошибок, усовершенствованием;

- версию – любые изменения программного и информационного обеспечения, а также БД, обязательные для передачи на объекты внедрения, позволяющие выполнять заявленные или дополнительные функции, а также обеспечивающие переход на новые операционные системы и информационную среду;

- развитие (очередь) – плановые изменения информационной системы, связанные с введением новых функций и улучшением эксплуатационных характеристик, переходом на новую информационную среду, внедрением новых комплексов технических средств, новых информационных технологий и пр.

В соответствии с приведенной классификацией итоговым продуктом для любой из моделей жизненного цикла является обязательная к передаче версия или очередь системы. Разработка очередями характерна при инкрементной стратегии. В качестве промежуточного программного обеспечения следует рассматривать ревизии и модификации. Как было отмечено выше, частая передача ревизий и модификаций конечным пользователям (особенно занятым другими производственными делами) нежелательна. Согласно смена версий информационных систем на железнодорожном транспорте должна выполняться не чаще одного - двух раз в год, а модификаций – не чаще раза в месяц.

3.6. Методологии, поддерживающие спиральную модель

В настоящее время имеется несколько методологий 1 разработки программного обеспечения, которые можно рекомендовать при использовании спиральной модели жизненного цикла. Наиболее известными из них являются методология быстрой разработки приложений (Rapid Application Development, RAD) и экстремальное программирование (eXtreme Programming, XP – автор Кент Бек, 1999).

3. Дайте краткую характеристику методологий и .

За десятилетия опыта построения программных систем был наработан ряд типичных схем выполнения работ при проектировании и разработке. Такие схемы получили название моделей ЖЦ. Модель жизненного цикла - это схема выполнения работ и задач на процессах, обеспечивающих разработку, эксплуатацию и сопровождение программного продукта, отражающая жизнь П П, начиная от формулировки требований к нему до прекращения его использования. Исторически модель жизненного цикла включает в себя:

  • 1) разработку требований или технического задания;
  • 2) разработку системы или технического проекта;
  • 3) программирование или рабочее проектирование;
  • 4) пробную эксплуатацию;
  • 5) сопровождение и улучшение;
  • 6) снятие с эксплуатации.

Выбор и построение модели ЖЦ ПП базируется на концептуальной идее проектируемой системы, с учетом ее сложности и в соответствии со стандартами, позволяющих формировать схему выполнения работ по усмотрению разработчика и заказчика.

Модель ЖЦ разбивается на процессы реализации, которые должны включать отдельные работы и задачи, реализуемые в данном процессе, и при их завершении осуществлять переход к следующему процессу.

При выборе общей схемы модели ЖЦ для конкретной предметной области решаются вопросы включения или невключения отдельных работ, очень важных для создаваемого вида продукта. В настоящее время основой формирования новой модели ЖЦ для конкретной прикладной системы является стандарт 180/1ЕС12207, который описывает полный набор процессов (более 40), охватывающий все возможные виды работ и задач, связанных с построением ПС.

Из этого стандарта нужно выбрать только те процессы, которые более всего подходят для реализации данного ПС. Обязательными являются основные процессы, которые присутствуют во всех известных моделях ЖЦ. В зависимости от целей и задач предметной области они могут быть пополнены процессами из группы вспомогательных либо организационных процессов (или подпроцессов) этого стандарта. Например, это касается вопроса включения в новую модель ЖЦ процесса обеспечение качества компонентов и системы в целом или определения набора проверочных (верификационных) процедур для обеспечения правильности и соответствия разрабатываемой ПС заданным требованиям (валидация), а также процесса обеспечения возможности внесения изменений в требования или компоненты системы и т.п.

Процессы, включенные в модель ЖЦ, предназначены для реализации уникальной функции ЖЦ и могут привлекать другие процессы для выполнения специализированных возможностей системы (например, защиты данных). Интерфейсы между двумя любыми процессами ЖЦ должны быть минимальными и каждый из них привязан к архитектуре системы.

Если работа или задача требуется более чем одному процессу, то они могут стать процессом, используемым однократно или на протяжении жизни системы. Каждый процесс должен иметь внутреннюю структуру, соответствующую действиям, которые должны выполняться на этом процессе.

Процессы модели ЖЦ ориентированы на разработчика системы. Он может выполнять один или несколько процессов. В свою очередь, процесс может быть выполнен одним или несколькими разработчиками, при этом кто-то из них назначается ответственным за один процесс или за все процессы модели.

Создаваемая модель ЖЦ увязывается с конкретными методиками разработки систем и соответствующими стандартами в области программной инженерии. Иными словами, каждый процесс ЖЦ подкрепляется выбранными для реализации его задач средствами и методами.

Важную роль при формировании модели ЖЦ имеют организационные аспекты: планирование последовательности работ и сроков их исполнения; подбор и подготовка ресурсов (людских, программных и технических) для выполнения работ; оценка возможностей реализации проекта в заданные сроки и с заданной стоимостью и др.

Внедрение модели ЖЦ в практическую деятельность по созданию программного продукта позволяет упорядочить взаимоотношения между субъектами процесса и максимально учитывать динамику модификации требований к проекту и системе.

Эти и другие не менее важные вопросы послужили источником формирования различных видов моделей ЖЦ, основанных на процессном подходе к разработке программных проектов. Основными среди них, положительно зарекомендовавшими себя в практике программирования, являются каскадная, спиральная, инкрементная, эволюционная и стандартизованная модели.

Каскадная модель. Каскадная (водопадная - vaterfaH) модель включает в себя выполнение следующих фаз (рис. 2.2):

  • 1) исследование концепции: происходит исследование требований, разрабатывается видение продукта и оценивается возможность его реализации;
  • 2) выработка требований: определяются программные требования для информационной предметной области системы, а также предназначение, линия поведения, производительность и интерфейсы;
  • 3) проектирование: разрабатывается и формулируется логически последовательная техническая характеристика программной системы, включая структуру данных, архитектуру ПО, интерфейсные представления и процессуальную (алгоритмическую) детализацию;
  • 4) реализация: эскизное описание ПС превращается в полноценный программный продукт, результатом является исходный код, база данных и документация; в реализации обычно выделяют два этапа: реализацию компонентов ПО и интеграцию компонент в готовый продукт; на обоих этапах выполняется кодирование и тестирование, которые тоже иногда рассматривают как два подэтапа;
  • 5) эксплуатация и поддержка: подразумевает запуск и текущее обеспечение, включая предоставление технической помощи, обсуждение возникших вопросов с пользователем, регистрацию запросов пользователя на модернизацию и внесение изменений, а также корректирование и/или устранение ошибок;
  • 6) сопровождение: устранение программных ошибок, неисправностей, сбоев, модернизация и внесение изменений, что обычно приводит к повторению или итерации отдельных этапов разработки.

Исследование концепции

Выработка требований

Проектирование

Реализация компонент

Интеграция компонент

Эксплуатация

Сопровождение

Рис. 2.2. Каскадная модель ЖЦ ПП

Основной принцип построения каскадной модели заключается в строго последовательном выполнении фаз, т.е. каждая последующая фаза начинается лишь тогда, когда полностью завершено выполнение предыдущей фазы.

Каждая фаза имеет входные и выходные данные, которые соответствуют определенным критериям входа и выхода. Каждая фаза полностью документируется, переход от одной фазы к другой осуществляется посредством формального обзора с участием заказчика.

Основой модели служат сформулированные в техническом задании (ТЗ) требования, которые меняться не должны. Критерием качества результата является соответствие продукта установленным требованиям.

Преимущества каскадной модели состоят в следующем. Модель проста, удобна в применении и понятна заказчикам, так как часто используется другими организациями для отслеживания проектов, не связанных с разработкой ПО. Процесс разработки выполняется поэтапно, и ее структурой может руководствоваться даже слабо подготовленный в техническом плане или неопытный персонал. Она способствует осуществлению строгого контроля менеджмента проекта, каждую стадию могут выполнять независимые команды, все документировано, что позволяет достаточно точно планировать сроки и затраты.

При использовании каскадной модели для «неподходящего» проекта могут проявляться следующие ее недостатки :

  • попытка вернуться на одну или две фазы назад, чтобы исправить какую-либо проблему или недостаток, приведет к значительному увеличению затрат и сбою в графике;
  • интеграция компонентов, на которой обычно выявляется большая часть ошибок, выполняется в конце разработки, что сильно увеличивает стоимость устранения ошибок;
  • запаздывание с получением результатов (если в процессе выполнения проекта требования изменились, то получится устаревший результат).

Недостатки каскадной модели особо остро проявляются в случае, когда трудно (или невозможно) сформулировать требования или требования могут меняться в процессе разработки.

Каскадная модель была впервые четко сформулирована в 1970 г. У. Ройсом. На начальном периоде она сыграла ведущую роль как метод регулярной разработки сложного ПО. В 70-80-х гг. XX в. модель была принята как стандарт министерства обороны США.

Со временем недостатки каскадной модели стали проявляться все чаще и возникло мнение, что она безнадежно устарела. Между тем каскадная модель не утратила своей актуальности при решении определенного типа задач, когда требования и их реализация максимально четко определены и понятны или используется неизменяемое определение продукта и вполне понятные технические методики, например при решении задач научно-вычислительного характера (разработка пакетов и библиотек научных программ); при разработке операционных систем и компиляторов, систем реального времени управления конкретными объектами; при повторной разработке типового продукта (автоматизированного бухгалтерского учета, начисления зарплаты); при выпуске новой версии уже существующего продукта, если вносимые изменения вполне определены и управляемы (перенос уже существующего продукта на новую платформу); и наконец, принципы каскадной модели находят применение в элементах моделей других типов.

Спиральная модель. На практике при решении достаточно большого количества задач разработка ПО имеет циклический характер, когда после выполнения некоторых стадий приходится возвращаться на предыдущие. Можно указать две основные причины таких возвратов. Во-первых, это ошибки разработчиков, допущенные на ранних стадиях и обнаруженные на более поздних (ошибки анализа, проектирования или кодирования, выявляемые, как правило, на стадии тестирования). Во-вторых, это изменения требований в процессе разработки («ошибки» заказчика). Это или неготовность заказчика сформулировать требования («сказать, что должна делать программа, я смогу только после того, когда увижу, как она работает»), или изменения требований, вызванные изменениями ситуации в процессе разработки (изменения рынка, новые технологии и т.д.).

Циклический характер разработки ПО отражается в спиральной модели ЖЦ, описанной Б. Боэмом в 1988 г. Эта модель, учитывающая повторяющийся характер разработки ПО (рис. 2.3), была предложена как альтернатива каскадной модели.

Основные принципы спиральной модели можно сформулировать следующим образом.

  • 1. Разработка нескольких вариантов продукта, соответствующих различным вариантам требований, с возможностью вернуться к более ранним вариантам.
  • 2. Создание прототипов ПО как средства общения с заказчиком для уточнения и выявления требований.

Определение целей, альтернатив, ограничений

Суммарная

стоимость

Оценка альтернатив выявить и решить риски

разработки

Планирование следующих фаз

Разработка следующего уровня

Рис. 2.3. Спиральная модель ЖЦ ПП: АР - анализ рисков; П - прототип

  • 3. Планирование следующих вариантов с оценкой альтернатив и анализом рисков, связанных с переходом к следующему варианту
  • 4. Переход к разработке следующего варианта до завершения предыдущего в случае, когда риск завершения очередного варианта/ прототипа становится неоправданно высок.
  • 5. Использование каскадной модели как схемы разработки очередного варианта продукта.
  • 6. Активное привлечение заказчика к работе над проектом. Заказчик участвует в оценке очередного прототипа, уточнении требований при переходе к следующему, оценке предложенных альтернатив очередного варианта и оценке рисков.

Разработка вариантов продукта в спиральной модели представляется как набор циклов раскручивающейся спирали (см. рис. 2.3). Каждому циклу соответствует такое же количество стадий, как и в каскадной модели. При этом начальные стадии, связанные с анализом и планированием, представлены более подробно с добавлением новых элементов. В каждом цикле выделяются четыре базовые фазы:

  • 1) определение целей, альтернативных вариантов и ограничений;
  • 2) оценка альтернативных вариантов, идентификация и разрешение рисков;
  • 3) разработка продукта следующего уровня;
  • 4) планирование следующей фазы.

«Раскручивание» проекта начинается с анализа общей постановки задачи на разработку ПП. На этой фазе определяются общие цели, устанавливаются предварительные ограничения, определяются возможные альтернативные подходы к решению задачи; на следующей фазе проводится оценка подходов, устанавливаются их риски; и наконец, на фазе разработки создается общая концепция (видение) продукта и путей его создания.

Следующий цикл начинается с планирования требований и деталей ЖЦ продукта для оценки затрат. На фазе определения целей устанавливаются альтернативные варианты требований, связанные с ранжированием требований по важности и стоимости их выполнения. На фазе оценки устанавливаются риски вариантов требований. На фазе разработки - спецификация требований (с указанием рисков и стоимости), готовится демоверсия ПО для анализа требований заказчиком.

Цикл разработки проекта начинается с планирования разработки. На фазе определения целей устанавливаются ограничения проекта (по срокам, объему финансирования, ресурсам), определяются альтернативы проектирования, связанные с альтернативами требований, применяемыми технологиями проектирования, привлечением субподрядчиков. На фазе оценки альтернатив устанавливаются риски вариантов и делается выбор варианта для дальнейшей реализации. На фазе разработки выполняется проектирование и создается демоверсия, отражающая основные проектные решения.

Цикл реализации также начинается с планирования. Альтернативными вариантами реализации могут быть применяемые технологии реализации, привлекаемые ресурсы. Оценка альтернатив и связанных с ними рисков определяется степенью «отработанности» технологий и «качеством» имеющихся ресурсов. Фаза разработки выполняется по каскадной модели с выходом в виде действующего варианта/прототипа продукта.

Следует отметить некоторые особенности спиральной модели. До начала разработки ПП есть несколько полных циклов анализа требований и проектирования. Количество циклов (в части анализа, проектирования и реализации) не ограничено и определяется сложностью и объемом задачи. В модели предполагаются возвраты на оставленные варианты при изменении стоимости рисков.

Спиральная модель (по сравнению с каскадной) имеет очевидные преимущества. Появляется возможность более тщательного проектирования (несколько начальных итераций) с оценкой результатов проектирования, что позволяет выявить ошибки проектирования на более ранних стадиях. Поэтапно уточняются требования заказчика в процессе выполнения итераций, что позволяет обеспечить более точное их удовлетворение. Заказчик может принимать участие в выполнении проекта с использованием прототипов программы. Заказчик видит, что и как создается, и не выдвигает необоснованных требований, реально оценивает объемы финансирования. Планирование и управление рисками при переходе на следующие итерации позволяют разумно распределять ресурсы и обосновывать финансирование работ. Возможна разработка сложного проекта «по частям» с выделением на первых этапах наиболее значимых требований.

Основные недостатки спиральной модели связаны с такими факторами, как:

  • сложность анализа и оценки рисков при выборе вариантов;
  • сложность поддержания версий продукта (хранение версий, возврат к ранним версиям, комбинация версий);
  • сложность оценки точки перехода на следующий цикл;
  • «бесконечность» модели (на каждом витке заказчик может выдвигать новые требования, которые приводят к необходимости следующего цикла разработки).

Спиральную модель целесообразно применять в следующих случаях: когда пользователи не уверены в своих потребностях; требования слишком сложны и могут меняться в процессе выполнения проекта, поэтому необходимо прототипирование для анализа и оценки требований; достижение успеха не гарантировано и необходима оценка рисков продолжения проекта; проект является сложным, дорогостоящим и обоснование его финансирования возможно только в процессе его выполнения; когда речь идет о применении новых технологий; при выполнении очень больших проектов, которые в силу ограниченности ресурсов можно делать только по частям.

Каскадная и спиральная модели устанавливают определенные принципы организации ЖЦ создания программного продукта. Каждая из них имеет преимущества, недостатки и области применимости. Каскадная модель проста, но применима в случае, когда требования известны и меняться не будут. Спиральная модель учитывает такие важные показатели проекта, как изменяемость требований, невозможность оценить заранее объем финансирования, риски выполнения проекта. Но спиральная модель сложна и требует больших затрат на сопровождение.

Существуют и другие модели, которые можно рассматривать как «промежуточные» между каскадной и спиральной. Они используют отдельные преимущества каскадной и спиральной моделей и достигают успеха при решении определенных типов задач.

Итерационная модель. Эта модель жизненного цикла является развитием классической каскадной модели, но предполагает возможность возврата на ранее выполненные этапы (рис. 2.4). Причинами возврата в классической итерационной модели являются выявленные ошибки, устранение которых и требует возврата на предыдущие этапы в зависимости от типа ошибки (ошибки кодирования, проектирования, спецификации или определения требований). Реально итерационная модель является более жизненной, чем классическая каскадная модель, так как создание ПО всегда связано с устранением ошибок. Следует отметить, что уже в первой статье, посвященной каскадной модели, Б. Боэм отмечал это обстоятельство и описал итерационный вариант каскадной модели.


Рис. 2.4.

Практически все применяемые модели жизненного цикла имеют итерационный характер, но цели итераций могут быть разными.

У-образная модель. Данная модель также была предложена как итерационная разновидность каскадной модели (рис. 2.5). Целью итераций в этой модели является обеспечение процесса тестирования. Тестирование продукта обсуждается, проектируется и планируется на ранних этапах ЖЦ разработки. План испытания приемки заказчиком разрабатывается на этапе планирования, а компоновочного испытания системы - на фазах анализа, разработки проекта и т.д.


Рис. 2.5.

Этот процесс разработки планов испытания на рисунке обозначен пунктирной линией между прямоугольниками У-образной модели. Помимо планов, на ранних этапах разрабатываются также и тесты, которые будут выполняться при завершении параллельных этапов.

Инкрементная (пошаговая) модель. Инкрементная разработка представляет собой процесс пошаговой реализации всей системы и поэтапного наращивания (приращения) функциональных возможностей (рис. 2.6). На первом шаге (инкремент 1) необходим полный, заранее сформулированный набор требований, которые разделяются по некоторому признаку на группы. Далее выбирается первая группа


требований и выполняется полный «проход» по каскадной модели. После того как первый вариант системы, выполняющий первую группу требований, сдан заказчику, разработчики переходят к следующему шагу (инкременту 2) по разработке варианта, выполняющего вторую группу требований, и т.д.

Особенностью инкрементной модели является разработка приемочных тестов на этапе анализа требований, что упрощает приемку варианта заказчиком и устанавливает четкие цели разработки очередного варианта системы.

Инкрементная модель особенно эффективна в случае, когда задача разбивается на несколько относительно независимых подзадач (например, разработка подсистем «Зарплата», «Бухгалтерия», «Склад», «Поставщики»), При этом для внутренней итерации в инкрементной модели можно использовать не только каскадную, но и другие типы моделей.

Следует начать с определения, Жизненный цикл программного обеспечения (Software Life Cycle Model) — это период времени, который начинается с момента принятия решения о создании программного продукта и заканчивается в момент его полного изъятия из эксплуатации. Этот цикл — процесс построения и развития ПО.

Модели Жизненного цикла программного обеспечения

Жизненный цикл можно представить в виде моделей. В настоящее время наиболее распространенными являются: каскадная , инкрементная (поэтапная модель с промежуточным контролем ) и спиральная модели жизненного цикла.

Каскадная модель

Каскадная модель (англ . waterfall model ) — модель процесса разработки программного обеспечения, жизненный цикл которой выглядит как поток, последовательно проходящий фазы анализа требований, проектирования. реализации, тестирования, интеграции и поддержки.

Процесс разработки реализуется с помощью упорядоченной последовательности независимых шагов. Модель предусматривает, что каждый последующий шаг начинается после полного завершения выполнения предыдущего шага. На всех шагах модели выполняются вспомогательные и организационные процессы и работы, включающие управление проектом, оценку и управление качеством, верификацию и аттестацию, менеджмент конфигурации, разработку документации. В результате завершения шагов формируются промежуточные продукты, которые не могут изменяться на последующих шагах.

Жизненный цикл традиционно разделяют на следующие основные этапы :

  1. Анализ требований,
  2. Проектирование,
  3. Кодирование (программирование),
  4. Тестирование и отладка,
  5. Эксплуатация и сопровождение.

Достоинства модели:

  • стабильность требований в течение всего жизненного цикла разработки;
  • на каждой стадии формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;
  • определенность и понятность шагов модели и простота её применения;
  • выполняемые в логической последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие ресурсы (денежные. материальные и людские).

Недостатки модели:

  • сложность чёткого формулирования требований и невозможность их динамического изменения на протяжении пока идет полный жизненный цикл;
  • низкая гибкость в управлении проектом;
  • последовательность линейной структуры процесса разработки, в результате возврат к предыдущим шагам для решения возникающих проблем приводит к увеличению затрат и нарушению графика работ;
  • непригодность промежуточного продукта для использования;
  • невозможность гибкого моделирования уникальных систем;
  • позднее обнаружение проблем, связанных со сборкой, в связи с одновременной интеграцией всех результатов в конце разработки;
  • недостаточное участие пользователя в создании системы — в самом начале (при разработке требований) и в конце (во время приёмочных испытаний);
  • пользователи не могут убедиться в качестве разрабатываемого продукта до окончания всего процесса разработки. Они не имеют возможности оценить качество, т.к.нельзя увидеть готовый продукт разработки;
  • у пользователя нет возможности постепенно привыкнуть к системе. Процесс обучения происходит в конце жизненного цикла, когда ПО уже запущено в эксплуатацию;
  • каждая фаза является предпосылкой для выполнения последующих действий, что превращает такой метод в рискованный выбор для систем, не имеющих аналогов, т.к. он не поддается гибкому моделированию.

Реализовать Каскадную модель жизненного цикла затруднительно ввиду сложности разработки ПС без возвратов к предыдущим шагам и изменения их результатов для устранения возникающих проблем.

Область применения Каскадной модели

Ограничение области применения каскадной модели определяется её недостатками. Её использование наиболее эффективно в следующих случаях:

  1. при разработке проектов с четкими, неизменяемыми в течение жизненного цикла требованиями, понятными реализацией и техническими методиками;
  2. при разработке проекта, ориентированного на построение системы или продукта такого же типа, как уже разрабатывались разработчиками ранее;
  3. при разработке проекта, связанного с созданием и выпуском новой версии уже существующего продукта или системы;
  4. при разработке проекта, связанного с переносом уже существующего продукта или системы на новую платформу;
  5. при выполнении больших проектов, в которых задействовано несколько больших команд разработчиков.

Инкрементная модель

(поэтапная модель с промежуточным контролем)

Инкрементная модель (англ . increment — увеличение, приращение) подразумевает разработку программного обеспечения с линейной последовательностью стадий, но в несколько инкрементов (версий), т.е. с запланированным улучшением продукта за все время пока Жизненный цикл разработки ПО не подойдет к окончанию.


Разработка программного обеспечения ведется итерациями с циклами обратной связи между этапами. Межэтапные корректировки позволяют учитывать реально существующее взаимовлияние результатов разработки на различных этапах, время жизни каждого из этапов растягивается на весь период разработки.

В начале работы над проектом определяются все основные требования к системе, подразделяются на более и менее важные. После чего выполняется разработка системы по принципу приращений, так, чтобы разработчик мог использовать данные, полученные в ходе разработки ПО. Каждый инкремент должен добавлять системе определенную функциональность. При этом выпуск начинают с компонентов с наивысшим приоритетом. Когда части системы определены, берут первую часть и начинают её детализировать, используя для этого наиболее подходящий процесс. В то же время можно уточнять требования и для других частей, которые в текущей совокупности требований данной работы были заморожены. Если есть необходимость, можно вернуться позже к этой части. Если часть готова, она поставляется клиенту, который может использовать её в работе. Это позволит клиенту уточнить требования для следующих компонентов. Затем занимаются разработкой следующей части системы. Ключевые этапы этого процесса — простая реализация подмножества требований к программе и совершенствование модели в серии последовательных релизов до тех пор, пока не будет реализовано ПО во всей полноте.

Жизненный цикл данной модели характерен при разработке сложных и комплексных систем, для которых имеется четкое видение (как со стороны заказчика, так и со стороны разработчика) того, что собой должен представлять конечный результат. Разработка версиями ведется в силу разного рода причин:

  • отсутствия у заказчика возможности сразу профинансировать весь дорогостоящий проект;
  • отсутствия у разработчика необходимых ресурсов для реализации сложного проекта в сжатые сроки;
  • требований поэтапного внедрения и освоения продукта конечными пользователями. Внедрение всей системы сразу может вызвать у её пользователей неприятие и только “затормозить” процесс перехода на новые технологии. Образно говоря, они могут просто “не переварить большой кусок, поэтому его надо измельчить и давать по частям”.

Достоинства и недостатки этой модели (стратегии) такие же, как и у каскадной (классической модели жизненного цикла). Но в отличие от классической стратегии заказчик может раньше увидеть результаты. Уже по результатам разработки и внедрения первой версии он может незначительно изменить требования к разработке, отказаться от нее или предложить разработку более совершенного продукта с заключением нового договора.

Достоинства:

  • затраты, которые получаются в связи с изменением требований пользователей, уменьшаются, повторный анализ и совокупность документации значительно сокращаются по сравнению с каскадной моделью;
  • легче получить отзывы от клиента о проделанной работе — клиенты могут озвучить свои комментарии в отношении готовых частей и могут видеть, что уже сделано. Т.к. первые части системы являются прототипом системы в целом.
  • у клиента есть возможность быстро получить и освоить программное обеспечение — клиенты могут получить реальные преимущества от системы раньше, чем это было бы возможно с каскадной моделью.

Недостатки модели:

  • менеджеры должны постоянно измерять прогресс процесса. в случае быстрой разработки не стоит создавать документы для каждого минимального изменения версии;
  • структура системы имеет тенденцию к ухудшению при добавлении новых компонентов — постоянные изменения нарушают структуру системы. Чтобы избежать этого требуется дополнительное время и деньги на рефакторинг. Плохая структура делает программное обеспечение сложным и дорогостоящим для последующих изменений. А прерванный Жизненный цикл ПО приводит еще к большим потерям.

Схема не позволяет оперативно учитывать возникающие изменения и уточнения требований к ПО. Согласование результатов разработки с пользователями производится только в точках, планируемых после завершения каждого этапа работ, а общие требования к ПО зафиксированы в виде технического задания на всё время её создания. Таким образом, пользователи зачастую получаю ПП, не удовлетворяющий их реальным потребностям.

Спиральная модель

Спиральная модель: Жизненный цикл — на каждом витке спирали выполняется создание очередной версии продукта, уточняются требования проекта, определяется его качество и планируются работы следующего витка. Особое внимание уделяется начальным этапам разработки — анализу и проектированию, где реализуемость тех или иных технических решений проверяется и обосновывается посредством создания прототипов.


Данная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипировнаие с целью сочетания преимуществ восходящей и нисходящей концепции, делающая упор на начальные этапы жизненного цикла: анализ и проектирование. Отличительной особенностью этой модели является специальное внимание рискам, влияющим на организацию жизненного цикла.

На этапах анализа и проектирования реализуемость технических решений и степень удовлетворения потребностей заказчика проверяется путем создания прототипов. Каждый виток спирали соответствует созданию работоспособного фрагмента или версии системы. Это позволяет уточнить требования, цели и характеристики проекта, определить качество разработки, спланировать работы следующего витка спирали. Таким образом углубляются и последовательно конкретизируются детали проекта и в результате выбирается обоснованный вариант, который удовлетворяет действительным требованиям заказчика и доводится до реализации.

Жизненный цикл на каждом витке спирали — могут применяться разные модели процесса разработки ПО. В конечном итоге на выходе получается готовый продукт. Модель сочетает в себе возможности модели прототипирования и водопадной модели . Разработка итерациями отражает объективно существующий спиральный цикл создания системы. Неполное завершение работ на каждом этапе позволяет переходить на следующий этап, не дожидаясь полного завершения работы на текущем. Главная задача — как можно быстрее показать пользователям системы работоспособный продукт, тем самым активизируя процесс уточнения и дополнения требований.

Достоинства модели:

  • позволяет быстрее показать пользователям системы работоспособный продукт, тем самым, активизируя процесс уточнения и дополнения требований;
  • допускает изменение требований при разработке программного обеспечения, что характерно для большинства разработок, в том числе и типовых;
  • в модели предусмотрена возможность гибкого проектирования, поскольку в ней воплощены преимущества каскадной модели, и в то же время разрешены итерации по всем фазам этой же модели;
  • позволяет получить более надежную и устойчивую систему. По мере развития программного обеспечения ошибки и слабые места обнаруживаются и исправляются на каждой итерации;
  • эта модель разрешает пользователям активно принимать участие при планировании, анализе рисков, разработке, а также при выполнении оценочных действий;
  • уменьшаются риски заказчика. Заказчик может с минимальными для себя финансовыми потерями завершить развитие неперспективного проекта;
  • обратная связь по направлению от пользователей к разработчикам выполняется с высокой частотой и на ранних этапах модели, что обеспечивает создание нужного продукта высокого качества.

Недостатки модели:

  • если проект имеет низкую степень риска или небольшие размеры, модель может оказаться дорогостоящей. Оценка рисков после прохождения каждой спирали связана с большими затратами;
  • Жизненный цикл модели имеет усложненную структуру, поэтому может быть затруднено её применение разработчиками, менеджерами и заказчиками;
  • спираль может продолжаться до бесконечности, поскольку каждая ответная реакция заказчика на созданную версию может порождать новый цикл, что отдаляет окончание работы над проектом;
  • большое количество промежуточных циклов может привести к необходимости в обработке дополнительной документации;
  • использование модели может оказаться дорогостоящим и даже недопустимым по средствам, т.к. время. затраченное на планирование, повторное определение целей, выполнение анализа рисков и прототипирование, может быть чрезмерным;
  • могут возникнуть затруднения при определении целей и стадий, указывающих на готовность продолжать процесс разработки на следующей и

Основная проблема спирального цикла — определение момента перехода на следующий этап. Для её решения вводятся временные ограничения на каждый из этапов жизненного цикла и переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. Планирование производится на основе статистических данных, полученных в предыдущих проектах и личного опыта разработчиков.

Область применения спиральной модели

Применение спиральной модели целесообразно в следующих случаях:

  • при разработке проектов, использующих новые технологии;
  • при разработке новой серии продуктов или систем;
  • при разработке проектов с ожидаемыми существенными изменениями или дополнениями требований;
  • для выполнения долгосрочных проектов;
  • при разработке проектов, требующих демонстрации качества и версий системы или продукта через короткий период времени;
  • при разработке проектов. для которых необходим подсчет затрат, связанных с оценкой и разрешением рисков.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные