Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Приборы и принадлежности: лабораторная установка с соленоидом, источник питания, милливольтметр, амперметр.

Краткая теория

Соленоидом называется цилиндрическая катушка, содержащая большое, число витков провода, по которому идет ток. Если шаг вин­товой линии проводника, образующего катушку, мал, то каждый ви­ток с током можно рассматривать как отдельный круговой ток, а соленоид - как систему последовательно соединенных круговых токов одинакового радиуса, имеющих общую ось.

Магнитное поле внутри соленоида можно представить как сумму магнитных полей, создаваемых каждым витком. Вектор индукции маг­нитного поля внутри соленоида перпендикулярен плоскости витков, т.е. направлен по оси соленоида и образует с направлением кольце­вых токов витков правовинтовую систему. Примерная картина силовых линий магнитного поля соленоида показана на рис. 1. Силовые линии магнитного поля замкнуты.

На рис, 2 показано сечение соленоида длиной L и с числом витков N и радиусом поперечного сечения R. Кружки с точками обозначают сечения витков катушки, по которым идет ток I , на­правленный от чертежа на нас, а кружки с крестиками - сечения вит­ков, в которых ток направлен за чертеж. Число витков на единицу длины соленоида обозначим .

Индукция магнитного поля в точке А, расположенной на оси соленоида, определяется путем интегрирования магнитных полей, со­здаваемых каждым витком, и равна

, (1)

где и - углы, образуемые с осью соленоида радиус-векто­рами и , проведенными из точки А к крайним виткам солено­ида, -магнитная проницаемость среды, магнитная постоянная.

Таким образом, магнитная индукция В прямо пропорциональна си­ле тока, магнитной проницаемости среды, заполняющей соленоид, и числу витков на единицу длины. Магнитная индукция также зависит от положения точки А относительно концов соленоида. Рассмотрим нес­колько частных случаев:

1. Пусть точка А находится в центре соленоида, тогда , и . Если соленоид достаточно длинный, то и (2)

2. Пусть точка A находится в центре крайнего витка, тогда , и . Если солено­ид достаточно длинный, то , и (3)

Из формул (2) и (3) видно, что магнитная индукция соленоида на его краю вдвое меньше по сравнению с ее величиной в центре.

3. Если длина соленоида во много раз больше радиуса его витков
("бесконечно" длинный соленоид), то для всех точек, лежащих внутри
соленоида на его оси, можно положить . Тогда
поле можно считать в центральной части соленоида однородным и рассчитывать его по формуле

Однородность магнитного поля нарушается вблизи краев соленоида. В этом случае индукцию можно определять по формуле


где k - коэффициент, учитывающий неоднородность поля.

Экспериментальное изучение магнитного поля соленоида в данной работе осуществляется с помощью специального зонда - маленькой катушки, укрепленной внутри штока с масштабной линейкой. Ось катуш­ки совпадает с осью соленоида, катушка подключается к милливольт­метру переменного тока, входное сопротивление которого много боль­ше сопротивления катушки-зонда. Если через соленоид идет перемен­ный ток стандартной частоты ( =50 Гц), то внутри соленоида и на его краях индукция переменного магнитного поля изменяется по закону (см. (5)):

Амплитуда магнитной индукции в этой формуле зависит от положения точки внутри соленоида. Если поместить в соленоид катуш­ку-зонд, то в соответствии с законом электромагнитной индукции, в ней возникает ЭДС индукции:

, (6)

где N 1 - число витков в катушке, S - площадь поперечного сече­ния катушки, Ф - магнитный поток ( , т.к. ось катушки совпадает с осью соленоида и, следовательно, вектор магнитной ин­дукции перпендикулярен плоскости поперечного сечения катушки.).

Так как величина индукции B изменяется по закону , , то из (6) получается формула для расчета ЭДС:

Из выражения (7) видно, что амплитуда ЭДС зависит от . Таким образом, измеряя амплитуду ЭДС, можно определить :

Коэффициент k учитывающий неоднородность магнитного поля соленоида на краях, можно о определить., по формуле. (5), зная и :

(9)

где - амплитуда переменного тока, идущего через соленоид.

Из формул (7) и (9) следует, что амплитуда ЭДС индукции прямо пропорциональна амплитуде переменного тока :

Включенные в цепь переменного тока амперметр и милливольт­метр измеряют действующие значения тока и ЭДС , которые связаны с амплитудами и соотношениями:

Для действующих значений тока и ЭДС формула (10) имеет вид

(11)

Из формулы (11) следует, что отношение пропорциональ­но коэффициенту K неоднородности индукции магнитного поля в точке соленоида, где проводятся измерения

(12)

где А - коэффициент пропорциональности.

В данной работе требуется выполнить два задания: 1) опреде­лить распределение индукции вдоль оси соленоида при некотором постоянном значении тока; 2) определить значение коэффициента к.

Техника безопасности:

1. Не подключают/ самостоятельно источник питания и милливольтметр к сети 220 В.

2. Не производить переключения цепей, находящихся под напряжением.

Не прикасаться к неизолированным частям цепей.

3. Не оставлять без присмотра включенную схему.

Порядок выполнения работы

Задание № 1. Исследование распределения индукции магнитного поля вдоль оси соленоида.

1. Собрать измерительную цепь по схеме, приведенной на рис. 3. Для этого в цепь соленоида включить источник питания и амперметр, а к выводам катушки - зонда - милливольтметр (для измерения ) В данной установке катушка-зонд имеет следующие параметры: =200 витков, S=2*10 -4 м 2 , частота переменного тока = 50 Гц, Число витков на единицу длины соленоида n = 2400 1/м

1- лабораторный стенд Z - шток «

2- катушка-зонд

3- соленоид
5- амперметр

6- источник питания с регулятором выход­ного напряжения (тока), 7- милливольтметр.

2. Установить шток с масштабной линейкой так, чтобы катушка-зонд оказалась примерно в середине соленоида.

3.Включить источник питания соленоида и установить ток соленоида (по амперметру), равный =25мА. Включить милливольтметр и после прогрева (5 мин) снять показания .

4.Перемещая шток с масштабной линейной, измерить при помощи
милливольтметра действующее значение ЭДС индукции через каждый
сантиметр положения линейки. По формуле (8) вычислить .
Результаты измерений и расчетов занести в таблицу 1 (учтите, что ).

Являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми поля-ми . То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля , создаваемого зарядами.

Соленоид.

Соленоид — это проволочная спираль с током.

Соленоид характеризуется числом витков на единицу длины n , длиной l и диаметром d . Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром d и длиной l . Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно ци-линдрической формы (тороидальный соленоид). Различают длинный соленоид (l d ) и короткий соленоид (l ≪ d ). В тех случаях, когда соотношение между d и l специально не оговаривается, подразуме-вается длинный соленоид.

Соленоид был изобретен в 1820 г. А. Ампером для усиления открытого X. Эрстедом магнитного действия тока и применен Д. Араго в опытах по намагничиванию стальных стержней. Магнит-ные свойства соленоида были экспериментально изучены Ампером в 1822 г. (тогда же им был вве-ден термин «соленоид»). Была установлена эквивалентность соленоида постоянным природным магнитам, что явилось подтверждением электродинамической теории Ампера, которая объясняла магнетизм взаимодействием скрытых в телах кольцевых молекулярных токов.

Силовые линии магнитного поля соленоида:

Направление этих ли-ний определяют с помощью второго правила правой руки .

Если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

Сравнив магнитное поле соленоида с полем постоянного магнита (рис. ниже), можно заметить, что они очень похожи.

Как и у магнита, у соленоида есть два полюса — северный (N ) и южный (S ). Северным полюсом называют тот, из которого магнитные линии выходят; южным полюсом — тот, в который они входят. Северный полюс у соленоида всегда располагается с той стороны, на которую указывает большой палец ладони при ее расположении в соответствии со вторым правилом правой руки.

Соленоид в виде катушки с большим числом витков используют в качестве магнита.

Исследования магнитного поля соленоида показывают, что магнитное действие соленоида увеличивается с увеличением силы тока и числа витков в соленоиде. Кроме того, магнитное действие соленоида или катушки с током усиливается при введении в него железного стержня, который называют сердечником .

Электромагниты.

Современные электромагниты могут поднимать грузы массой несколько десятков тонн. Они используются на заводах при перемещении тяжелых изделий из чугуна и стали. Электромагниты используются также в сельском хозяйстве для очистки зерен ряда растений от сорняков и в дру-гих отраслях промышленности.

Магнитное поле соленоида представляет собой суперпозицию отдельных полей, которые создаются каждым витком в отдельности. Через все витки протекает один и тот же ток. Оси всех витков лежат на одной лини. Соленоид представляет собой катушку индуктивности, имеющую цилиндрическую форму. Эта катушка намотана из проводящей проволоки. При этом витки уложены плотно друг к другу и имеют одном направление. При этом считается, что длинна катушки значительно превышает диаметр витков.

Давайте рассмотрим магнитную индукцию, создаваемую каждым витком. Видно, что индукция внутри каждого витка направлена в одну и ту же сторону. Если смотреть в центр витка, то индукция от его краев будет складываться. При этом индукция магнитного поля между двух соседних витков направлена встречно. Так как она создана одним и тем же током то она компенсируется.

Рисунок 1 — Поле создаваемое отдельными витками соленоида

Если витки соленоида намотаны достаточно плотно, то между всеми витками встречное поле будет компенсировано, а внутри витков произойдет сложение отдельных поле в одно общее. Линии этого поля будут проходить внутри соленоида, и охватывать его снаружи.

Если исследовать магнитное поле внутри соленоида любыми способами, например, с помощью железных опилок то можно сделать вывод, что оно однородно. Лини магнитного поля в этой области представляют собой параллельные прямые. Мало того что они параллельны сами себе но они еще параллельны оси соленоида. Выходя за приделы соленоида, они искривляются и замыкаются снаружи катушки.

Рисунок 2 — Поле создаваемое соленоидом

Из рисунка видно, что поле создаваемое соленоидом похоже на поле, которое создает постоянный стержневой магнит. На одном конце силовые линии выходят из соленоида и этот конец аналогичен северному полюсу постоянного магнита. А в другой они входят, и этот конец соответствует южному полюсу. Отличие же заключается в том, что поле присутствует и внутри соленоида. И если провести опыт с железными опилками, то они втянутся в пространство между витками.

Но если внутрь соленоида вставить деревянный сердечник либо сердечник из любого другого немагнитного материала, то при проведении опыта с железной стружкой картина поля постоянного магнита и соленоида будет идентична. Так как деревянный сердечник не исказит силовые лини, но при этом не даст проникнуть опилкам внутрь катушки.

Рисунок 3 — Картина поля постоянного стержневого магнита

Для определения полюсов соленоида можно использовать несколько методов. Например, самый простой, использовать магнитную стрелку. Она притянется к противоположному полюсу магнита. Если же известно направление тока в витке полюсы можно определить при помощи правила правого винта. Если вращать головку правого винта в направлении тока, то поступательное движение укажет направление поля в соленоиде. А зная, что поле направлено от северного полюса к южному и можно определить, где какой полюс находится.

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

Соленоидом называется совокупность N одинаковых витков изолированного проводящего провода, равномерно намотанных на общий каркас или сердечник. По виткам проходит одинаковый ток. Магнитные поля, созданные каждым витком в отдельности, складываются по принципу суперпозиции. Индукция магнитного поля внутри соленоида велика, а вне его - мала. Для бесконечно длинного соленоида индукция магнитного поля вне соленоида стремится к нулю. Если длина соленоида во много раз больше диаметра его витков, то соленоид можно практически считать бесконечно длинным . Магнитное поле такого соленоида целиком сосредоточено внутри него и является однородным (рис.6).

Величину индукции магнитного поля внутри бесконечно длинного соленоида можно определить, используя теорему о циркуляции вектора :циркуляция вектора по произвольному замкнутому контуру равна алгебраической сумме токов, охватываемых контуром, умноженной на магнитную постоянную μ о :

, (20)

где μ 0 = 4π 10 -7 Гн/м.

Рис.6. Магнитное поле соленоида

Для определения величины магнитной индукции В внутри соленоида выберем замкнутый контур ABCD прямоугольной формы, где - элемент длины контура, задающий направление обхода (рис.6). При этом длиныAB и CD будем считать бесконечно малыми.

Тогда циркуляция вектора по замкнутому контуруABCD, охватывающему N витков, равна:

На участках AB и CD произведение
, так как вектораивзаимно перпендикулярны. Поэтому

. (22)

На участке DA вне соленоида интеграл
, так как магнитное поле вне контура равно нулю.

Тогда формула (21) примет вид:

, (23)

где l – длина участка BC. Сумма токов, охватываемых контуром, равна

, (24)

где I c – сила тока соленоида; N – число витков, охватываемых контуром ABCD.

Подставив (23) и (24) в (20), получим:

. (25)

Из (25) получим выражение для индукции магнитного поля бесконечно длинного соленоида:

. (26)

Так как число витков на единицу длину соленоида n равно:

(27)

то окончательно получим:

. (28)

Если внутрь соленоида помещен сердечник, то формула (28) для В примет вид:

. (29),

где  - магнитная проницаемость материала сердечника.

Таким образом, индукция В магнитного поля соленоида определяется током соленоида I c , числом витком n на единицу длины соленоида и магнитной проницаемостью материала сердечника.

Цилиндрический магнетрон

Магнетроном называется двухэлектродная электронная лампа (диод), содержащая накаливаемый катод и холодный анод и помещенная во внешнее магнитное поле.

Анод диода имеет форму цилиндра радиусом . Катод представляет собой полый цилиндр радиусом, вдоль оси которого расположена нить накала, как правило, изготавливаемая из вольфрама (рис.7).

Раскалённый катод в результате явления термоэлектронной эмиссии испускает термоэлектроны, которые образуют вокруг катода электронное облако. При подаче анодного напряжения
(рис.8), электроны начинают перемещаться от катода к аноду вдоль радиусов, что приводит к возникновению анодного тока. Анодный ток регистрируется миллиамперметром.

Рис.7. Схема диода

Рис.8. Электрическая схема цепи

Величина анодного напряжения регулируется потенциометром R A . Чем больше анодное напряжение, тем большее количество электронов за единицу времени достигает анода, следовательно, тем больше анодный ток.

Напряжённость электрического поля Е между катодом и анодом такая же, как и в цилиндрическом конденсаторе:

, (30)

где r – расстояние от оси катода до данной точки пространства между катодом и анодом.

Из формулы (30) следует, что напряжённость поля Е обратно пропорциональна расстоянию r до оси катода. Следовательно, напряженность поля максимальна у катода.

r к <

то значение логарифма ln стремится к большой величине. Тогда с увеличением расстояния r напряженность электрического поля между катодом и анодом снижается до нуля. Поэтому, можно считать, что электроны приобретают скорость под действием поля только вблизи катода, и дальнейшее их движение к аноду происходит с постоянной по величине скоростью.

Внешнее магнитное поле, в которое помещён диод, создаётся соленоидом (рис.8). Длина соленоида l много больше диаметра его витков, поэтому поле внутри соленоида можно считать однородным. Ток в цепи соленоида изменяется с помощью потенциометра R C (рис.8) и регистрируется амперметром.

Характер движения электронов в зависимости от величины поля соленоида показан на рис.9. Если ток в цепи соленоида отсутствует, то индукция магнитного поля В = 0. Тогда электроны движутся от катода к аноду практически по радиусам.

Увеличение тока в цепи соленоида приводит к возрастанию величины В. При этом, траектории движения электронов начинают искривляться, однако все электроны достигают анода. В анодной цепи будет течь ток такой же, как и в отсутствии магнитного поля.

Рис.9. Зависимость анодного тока I A от величины тока соленоида I c в идеальном (1) и реальном (2) случаях, а также характер движения электронов в зависимости от величины поля соленоида.

При некотором значении тока в соленоиде радиус окружности, по которой движется электрон, становится равным половине расстояния между катодом и анодом:

.. (32)

Электроны в этом случае касаются анода и уходят к катоду (рис.9). Такой режим работы диода называется критическим . При этом по соленоиду течёт критический ток I кр, которому соответствует критическое значение индукции магнитного поля В = В кр.

При В = В кр анодный ток в идеальном случае должен скачком уменьшиться до нуля. При В > В кр электроны не попадают на анод (рис.9), и анодный ток также будет равен нулю (рис.9, кривая 1).

Однако на практике, вследствие некоторого разброса скоростей электронов и нарушения соосности катода и соленоида, анодный ток уменьшается не скачком, а плавно (рис.9, кривая 2). При этом значение силы тока соленоида, соответствующее точке перегиба на кривой 2, считается критическим I кр. Критическому значению тока соленоида соответствует анодный ток, равный:

, (33)

где
– максимальное значение анодного тока при В = 0.

Зависимость анодного тока I A от величины индукции магнитного поля В (или от тока в соленоиде) при постоянном анодном напряжении и постоянном накале называется сбросовой характеристикой магнетрона.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные