Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Фото: РИА "Новости"
Сергей Пятаков

Человек будущего сможет погружаться на огромные глубины, но ему придется научиться дышать жидкостью.

Жидкостное дыхание, или дыхание с помощью хорошо растворяющей кислород жидкости давно стало идеей фикс для ученых всего мира. Прибор «человека-амфибии» способен сохранить жизни аквалангистам и подводникам, эта технология может быть использована в медицине, а в перспективе будет полезна при совершении длительных космических полетов при освоении других планет. Реальные разработки по созданию аппарата жидкостного дыхания велись в 1970-1980 е годы в СССР и США, тогда эксперименты проводились на животных, но больших успехов добиться не удалось. Насколько перспективной и реалистичной остается эта технология, разбирался корреспондент «Совершенно секретно».

Нужно отметить, что жидкостное дыхание на первый взгляд кажется фантастическим вымыслом, но на самом деле имеет вполне научную основу, и под эту идею подведена серьезная теоретическая база. Вместо кислорода ученые предлагают использовать особые химические соединения, которые способны очень хорошо растворять кислород и углекислый газ.

ЖИДКОСТНОЕ ДЫХАНИЕ ИЗБАВИТ ВОДОЛАЗОВ ОТ КЕССОННОЙ БОЛЕЗНИ

Вице-адмирал, Герой Социалистического Труда, доктор технических наук, профессор, действительный член РАЕН, председатель Комитета по проведению подводных работ особого назначения при Правительстве РФ в 1992-1994 годах Тенгиз Борисов рассказал «Совершенно секретно», что опыты с жидкостным дыханием ведутся на протяжении нескольких десятков лет.

«В настоящее время человек ограничен в возможностях - водолаз, в дыхательных баллонах которого находится обычный воздух, может без риска для здоровья погрузиться на глубину 60 метров. В исключительных случаях самые опытные пловцы достигали 90 метров, дальше человеческий организм подвергается токсическому воздействию азота. После того как появились специальные гелийсодержащие газовые смеси, в которых поддерживается небольшое постоянное давление кислорода и отсутствует азот, стало возможным в жестких скафандрах погружаться до 300 метров, и это предел.

Главный враг водолазов - кессонная болезнь: при всплытии с большой глубины из-за быстрого понижения давления вдыхаемой дыхательной смеси газы, которые растворяются в крови, начинают бурно выделяться, как будто бутылку шампанского встряхнули, и вино внутри вспенилось. Газы разрушают стенки клеток и кровеносных сосудов, забивают капилляры, блокируют кровоток, последствия ужасные - при тяжелой форме декомпрессионная болезнь может привести к параличу или смерти.

Чтобы дальше двигаться на глубину, нужны новые технологии. И сегодня как самый перспективный рассматривается принцип жидкостного дыхания. Этот метод должен преодолеть основные проблемы водолазов: при погружении и всплытии решится вопрос с компрессией, не будет происходить обжатия грудной клетки, поскольку жидкости практически не сжимаются.

Однако, даже если специальные жидкие смеси будут созданы, придется разработать методы применения жидкостного дыхания. Ведь для того, чтобы человеку заполнить свои легкие тягучим веществом, придется преодолеть жесточайшее психологическое сопротивление организма. Были проведены эксперименты на людях: при попытке заполнить легкие у человека непроизвольно происходит срабатывание рефлексов, начинает сжиматься гортань и перекрываются легкие.

У человека существует врожденная реакция на воду - достаточно капле попасть на чувствительные клетки бронхов, как кольцевая мышца сдавливает горло, возникают спазмы, а затем наступает удушье. Хотя специальная жидкость никакого вреда причинить не может, но организм отказывается это понимать, и мозг дает команду сопротивляться. В завершение не менее неприятная процедура, когда эту жидкость нужно удалять из легких. Но если решение будет найдено, это будет серьезный прорыв - тогда водолазы получат возможность работать на очень больших глубинах.

Предполагается, что эта технология будет использоваться в военных целях, для разведки нефтегазовых месторождений и обслуживания глубоководных скважин, а также для подъема ценностей с затонувших на больших глубинах кораблей. Сегодня в мире ведется несколько разработок, которые позволяют надеяться, что эта технология получит путевку в будущее».


ИССЛЕДОВАНИЯ ПОМОГЛИ В РАБОТЕ АМЕРИКАНСКИХ НЕОНАТОЛОГОВ

Американцы обратились к идее жидкостного дыхания в 1960 х. И пожалуй, самое большое их достижение - зарегистрированный патент на водолазный костюм, оснащенный баллоном со специальной жидкостью, обогащенной кислородом. Согласно идее автора, так называемый жидкий воздух, который подается из баллона в шлем дайвера, заполняет собою все пространство вокруг головы, вытесняет воздух из легких, полостей носоглотки и ушей, насыщая легкие человека достаточным количеством кислорода. Жидкость для дыхания предполагалось создать на основе перфторуглеродов, в которых можно растворить требуемое количество газа.

В свою очередь, углекислый газ, который выделяется в процессе дыхания, должен был выводиться при помощи своеобразного аналога жабр, прикрепленного к бедренной вене ныряльщика. В итоге кислород поступает в кровь через легкие, а углекислый газ выводится прямо из крови. Правда, для использования такой системы человек должен будет научиться обходиться без использования основных функций дыхательной системы - вдохов и выдохов.

Первые опыты, связанные с дыханием при помощи жидкости, американцами были проведены в 1960 е годы. Проводились они на грызунах. Ученые осуществили полную замену крови крыс эмульсией с большой концентрацией жидкого кислорода. Какое-то время животные мог-ли дышать жидкостью, но их организм не смог выводить углекислый газ, что через непродолжительное время привело к разрушению легких. В последующие годы формула была доработана.

Одной из самых удачных разработок стала жидкость, которая используется в LiquiVent - препарате, созданном для лечения тяжелого расстройства дыхания у недоношенных новорожденных. По своей консистенции это чистая маслянистая жидкость, обладающая малой плотностью, которая содержит больше кислорода, чем воздух. Поскольку эта жидкость инертна, она не наносит вреда легким, так как у нее весьма низкая температура кипения и она быстро и легко выводится из легких.

Это вещество привлекает специалистов еще и потому, что оно бесцветно, не имеет запаха и нетоксично - почти как воздух. Эта жидкость удерживает гораздо большее, чем воздух, количество кислорода на единицу объема. Во время следующих экспериментов мыши и кошки, погруженные в насыщенную кислородом перфторуглеводородную жидкость, жили уже в течение нескольких дней. Однако во время опытов также выяснилось, что нежные легкие млекопитающих плохо приспособлены к тому, чтобы постоянно вкачивать и выкачивать жидкость - поэтому заменять ею воздух можно только на очень непродолжительное время.

Идею системы жидкостного дыхания сегодня используют в своей практике врачи-неонатологи, которые уже более 20 лет применяют подобные технологии для ухода за недоношенными младенцами. В этой отрасли медицины жидкостное дыхание получило широкое применение. Этот способ используют для спасения новорожденных. Легочная ткань таких младенцев к рождению сформирована не до конца, поэтому с помощью специальных устройств дыхательную систему насыщают как раз кислородсодержащим раствором на основе перфторуглеродов. Неслучайно в состав групп по созданию жидкостного дыхания американские экспериментаторы непременно включают врачей этого профиля.

КРУПНЫЕ МЛЕКОПИТАЮЩИЕ ДЫШАТЬ ЖИДКОСТЬЮ ТАК И НЕ НАУЧИЛИСЬ

В дальнейшем за счет усовершенствования дыхательной жидкости удалось добиться многочасового жидкостного дыхания у мелких лабораторных животных - мышей и крыс и у щенков собак. Однако ученые столкнулись с новой проблемой - добиться устойчивого жидкостного дыхания у крупных лабораторных животных (взрослых собак, диаметр трахеи и устройство легких которых близки к человеку) так и не получилось. Взрослые собаки выдерживали не более 10-20 минут и погибали от легочной недостаточности. Перевод на искусственную вентиляцию жидкостью легких с помощью клинической аппаратуры улучшал показатели, но дополнительное оборудование для дыхательного снаряжения разработчиками не рассматривается.

Для того чтобы человек мог дышать жидкостью, она должна выполнять две главные функции: поставлять кислород легким и выводить углекислый газ. Этим свойством обладает кислород, который человек вдыхает, и еще несколько газов, а также, как доказали ученые, некоторые жидкости тоже способны выполнять подобные функции. При этом неудачные эксперименты с жидкостным дыханием также имеют объяснение: человеческие легкие намного тяжелее воспринимают и выводят жидкость, чем воздух, поэтому процесс замены углекислого газа кислородом происходит с большим замедлением.

Действительно, человеческие легкие технически способны «дышать» определенной богатой кислородом жидкостной смесью, но только на протяжении нескольких минут. Если предположить, что жидкое дыхание получит распространение, то больным людям, использующим жидкий воздух в медицинских целях, придется постоянно использовать дополнительные устройства, по сути, таскать на себе аппарат искусственной вентиляции легких для стимулирования дыхания. Водолазам, которые и так под водой испытывают жесточайший дискомфорт, придется нести на себе дополнительное оборудование, при этом дышать жидкостью во время длительных и глубоких погружений будет нелегко.

В США ЗАПАТЕНТОВАН ВОДОЛАЗНЫЙ КОСТЮМ, В КОТОРОМ ИСПОЛЬЗОВАН ПРИНЦИП ЖИДКОСТНОГО ДЫХАНИЯ


В РОССИИ, ВОЗМОЖНО, ПОСТАВИЛИ ОПЫТ НАД ЧЕЛОВЕКОМ

В Советском Союзе также существовали программы жидкостного дыхания. В одном из советских НИИ добились значительных результатов в реализации жидкостного дыхания. Были разработаны специальные аппараты, ставились опыты на животных и были достигнуты определенные результаты. Мыши и собаки, действительно, дышали жидкостью, причем достаточно длительное время. Есть информация, что в 1991 году должны были состояться первые опыты на волонтерах. Нужно отметить, что в Советском Союзе эти программы не имели коммерческой направленности и были связаны исключительно с военными разработками.

Поэтому в связи с прекращением финансирования, все работы были свернуты, а позднее - полностью прекращены. Однако недавно некоторые проекты были реанимированы. Как удалось узнать «Совершенно секретно», в одном из оборонных НИИ России провели эксперимент с добровольцем, у которого в результате хирургической операции в связи с опасной патологией была удалена гортань (поэтому кольцевая мышца отсутствовала, это позволило успешно провести эксперимент).

Человеку залили специальный раствор сначала в легкие, а затем погрузили под воду в специально изготовленной маске. После эксперимента жидкость из его легких была безболезненно откачана. Воодушевленные этим успехом российские специалисты утверждают, что в будущем дышать под водой смогут обычные люди с нормальным горлом, поскольку преодоление рефлекторной реакции организма на жидкость вполне реально.

Член-корреспондент РАЕН, кандидат медицинских наук Андрей Филиппенко, который продолжительное время работает над проектом жидкостного дыхания, рассказал «Совершенно секретно», что в настоящее время об этих разработках практически ничего нельзя говорить из-за их закрытости.

«Сегодня эти разработки ведутся как в интересах военных, так и в гражданской сфере. Существует множество технологических трудностей, которые стопорят продвижение этих проектов. В настоящее время эта технология работает исключительно в лаборатории и совершенно непригодна для эксплуатации в реальных условиях. Например, на больших глубинах. Эта технология плохо работает не только в России, но и за рубежом. Чтобы продвинуться вперед, необходимо усовершенствовать множество технологий, в том числе те, которые связаны с преодолением большого давления».

ЖИДКОСТНОЕ ДЫХАНИЕ МОЖЕТ БЫТЬ ВОСТРЕБОВАНО В КОСМОСЕ И У ПОДВОДНИКОВ

В Советском Союзе одно время рассматривалась идея межпланетного перелета. Так как космический полет сопряжен с большими перегрузками космонавтов, анализировались варианты, как их уменьшить. Среди прочего предлагался вариант погружения космических путешественников в жидкость. Действительно, если человека погрузить водообразный раствор, то при перегрузках давление будет распространяться равномерно на все тело. Таков принцип использовался при создании антиперегрузочного костюма, который применяется в ВВС Германии. Производитель - немецко-швейцарская компания AutoflugLibelle - заменила воздушные подушки герметичными сосудами с жидкостью. Таким образом, костюм представляет собой жесткий скафандр, наполненный водой. Это позволяет пилоту сохранять сознание и работоспособность даже при огромных (свыше 10 g) перегрузках.

Однако использование положительных свойств жидкости для дыхания в авиации и космонавтике может навсегда остаться мечтой - вещество для костюма защиты от перегрузок должно обладать плотностью воды, а единственная рабочая на сегодняшний день перфторуглеводородная жидкость в два раза тяжелее. Если идею удастся реализовать, погруженный в жидкую среду и дышащий твердым кислородом космонавт практически не будет ощущать эффекта экстремально высоких перегрузок, поскольку силы будут распределяться равномерно во всех направлениях.

Несомненно, что технология жидкостного дыхания в первую очередь нужна морякам-подводникам. Как это ни парадоксально звучит, но в настоящее время нет надежных способов спасения людей, терпящих бедствие на больших глубинах. Не только у нас, но и во всем мире методы и техника спасения терпящих бедствие на большой глубине много лет практически не развиваются. То, что средства аварийного спасения экипажей безнадежно устарели и нуждаются в скорейшей модернизации, показала трагедия подлодки «Курск».

Субмарина была оснащена оборудованием, помогающим покинуть ее в случае аварии, но всплывающая спасательная камера была повреждена взрывом, и воспользоваться ею не удалось. Кроме того, для каждого члена команды было предусмотрено штатное индивидуальное спасательное средство, которое позволяло спасаться с глубины до 120 метров. Несколько минут, необходимых для подъема, человек в этом снаряжении может дышать кислородно-гелиевой смесью. Но и этими средствами люди воспользоваться не смогли. Помимо прочего, это связано и с тем, что баллоны с гелием на подлодке не хранятся, поскольку при высокой концентрации в воздухе этот газ может вызвать удушье и состояние кислородной недостаточности.

Таков большой недостаток индивидуального снаряжения. Спасатели должны были передать баллоны членам команды снаружи, через люки шлюзовой камеры. Нужно отметить, что все это оборудование было разработано в далеком 1959 году и с тех пор никак не менялось. Да и сегодня никаких альтернатив не видно. Возможно, поэтому о применении дыхания жидкостью в морском аварийно-спасательном деле говорят как о самом перспективном методе будущего.

Российский фонд перспективных исследований проверяет на собаках технологию жидкостного дыхания для подводников, сообщает со ссылкой на руководителя Фонда Виталия Давыдова.


«В одной из его лабораторий ведутся работы по жидкостному дыханию. Пока эксперименты проводят над собаками. При нас рыжую таксу погрузили в большую колбу с водой мордой вниз. Казалось бы, зачем над животным издеваться, сейчас захлебнется же. Ан нет. Она просидела под водой 15 минут. А рекорд – 30 минут. Невероятно. Оказывается, легкие собаки заполнились жидкостью, насыщенной кислородом, что дало ей возможность дышать под водой. Когда её вытащили, она была немного вялая – говорят, из-за переохлаждения (а я думаю, кому понравится под водой в банке у всех на глазах торчать), но через несколько минут стала вполне себе. Скоро опыты будут проводить на людях», – рассказал корреспондент «РГ» Игорь Черняк.

«Всё это было похоже на фантастический сюжет знаменитого фильма "Бездна", где на огромную глубину человек мог спуститься в скафандре, шлем которого был заполнен жидкостью. Ею подводник и дышал. Теперь это уже не фантастика», – пишет он.

По словам корреспондента, «технология жидкостного дыхания предполагает заполнение легких специальной жидкостью, насыщенной кислородом, который проникает в кровь».

«Фонд перспективных исследований одобрил реализацию уникального проекта, работы ведет НИИ медицины труда. Планируется создать специальный скафандр, который пригодится не только подводникам, но и лётчикам, а также космонавтам», – сообщает он.

Давыдов рассказал корреспонденту, что для собак создана специальная капсула, которая погружается в гидрокамеру с повышенным давлением. «На данный момент собаки могут без последствий для здоровья более получаса дышать на глубине до 500 метров. "Все собаки-испытатели выжили и чувствуют себя после длительного жидкостного дыхания хорошо», – сказал руководитель Фонда.

Далее газета пишет: «Мало кто знает, что опыты по жидкостному дыханию на людях в нашей стране уже проводились. Дали потрясающие результаты. Акванавты дышали жидкостью на глубине в полкилометра и больше. Вот только народ о своих героях так и не узнал.

В 1980-х годах в СССР разработали и стали осуществлять серьезную программу по спасению людей на глубине.

Проектировались и даже вводились в строй специальные спасательные подводные лодки. Изучались возможности адаптации человека к глубинам в сотни метров. Причем находиться на такой глубине акванавт должен был не в тяжелом водолазном скафандре, а в легком утепленном гидрокостюме с аквалангами за спиной, движения его не были ничем стеснены.

Поскольку человеческий организм состоит почти целиком из воды, то ему не опасно страшное давление на глубине само по себе. Организм надо просто готовить к нему, повышая в барокамере давление до необходимого значения. Главная проблема в другом. Чем дышать при давлении в десятки атмосфер? Чистый воздух для организма становится ядом. Его необходимо разбавлять в специально подготовленных газовых смесях, как правило, азотно-гелиево-кислородных.

Их рецептура - пропорции различных газов - самая большая тайна во всех странах, где идут аналогичные исследования. Но на очень большой глубине и гелиевые смеси не спасают. Легкие, чтобы их не разорвало, должны заполняться жидкостью. Что из себя представляет жидкость, которая, попав в легкие, не приводит к удушью, а передает через альвеолы кислород в организм – тайна из тайн.

Поэтому-то все работы с акванавтами в СССР, а затем и в России велись под грифом "совершенно секретно".

Тем не менее, есть вполне достоверная информация о том, в конце 1980-х на Черном море существовала глубоководная аквастанция, в которой жили и работали подводники-испытатели. Они выходили в море, облаченные лишь в гидрокостюмы, с аквалангами за спиной, и работали на глубинах от 300 до 500 метров. В их легкие под давлением подавалась специальная газовая смесь.

Предполагалось, что если подлодка терпит бедствие и легла на дно, то к ней направят субмарину-спасатель. Акванавтов заранее подготовят к работам на соответствующей глубине.

Самое тяжелое – суметь выдержать наполнение легких жидкостью и просто не умереть со страха.

И когда спасательная субмарина подойдет к месту бедствия, водолазы в легком снаряжении выйдут в океан, обследуют аварийную лодку и помогут эвакуировать экипаж с помощью специальных глубоководных аппаратов.

До конца те работы довести не удалось из-за распада СССР. Впрочем, тех, кто работал на глубине, все-таки успели наградить звездами Героев Советского Союза».

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление становится ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление равно 16 мм рт. ст. (смерть), при вдыхании чистого кислорода - всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах .

Дыхание под водой на больших глубинах

При опускании под воду растет атмосферное давление. Например, на глубине 10 м давление равно 2 атмосферам, на глубине 20 м - 3 атмосферам, и т. д. В этом случае парциальное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза.

Это грозит высоким растворением кислорода. Но избыток его не менее вреден для организма, чем недостаток. Поэтому один из путей уменьшения этой опасности - использование газовой смеси, в которой процентное содержание кислорода уменьшено. Например, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м - 2%.

Второй проблемой является влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состояние. Поэтому, начиная с глубины 60 м, азотно-кислородная смесь заменяется гелиокислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотический эффект лишь на глубине 200-300 м. Сейчас проводятся исследования по использованию водородно-кислородных смесей для работы на глубинах до 2 км, т. к. водород очень легкий газ.

Третья проблема водолазных работ - это декомпрессия. Если быстро подниматься с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию - закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-х недельной декомпрессии .

После публичного эксперимента по жидкостному дыханию с собакой ученые в полезности этого опыта и перспективах этой технологии в целом. Редакция N + 1 попросила врача и ученого Андрея Филиппенко, который занимается разработкой систем жидкостного дыхания с советских времен, рассказать о современном состоянии исследований в этой сфере.

N + 1: Все мы видели эффектную демонстрацию с таксой, организованную Фондом перспективных исследований. Вы занимаетесь тематикой жидкостного дыхания с 1980-х годов, вы имеете какое-то отношение к этому проекту? Вы являетесь сотрудником ФПИ?

Андрей Филиппенко: Нет, я работаю независимо от ФПИ. В 1980-х я был научным руководителем исследований по проблемам жидкостного дыхания (НИОКР «Олифа МЗ»). В 2014–15 годах выполнил с ФПИ аванпроект «Терек», в качестве общественной нагрузки продолжал обучать жидкостному дыханию, ездил и согласовывал задания соисполнителям в продолжение темы «Терек-1» до первой половины 2016 года. Сейчас продолжаю работать по проблеме как врач-исследователь и разработчик аппаратов жидкостного дыхания для подводников, водолазов и космонавтов.

Эксперименты с жидкостным дыханием в 1988 году

Специалисты из ИМБП сомневаются, что в экстремальной ситуации можно действительно использовать технологию жидкостного дыхания, в частности, потому что для перехода на него требуется быстро убрать воздух из легких, иначе может наступить «белая асфиксия». Как решить эту проблему?

Причина такой асфиксии - смыкание голосовой щели, точнее, голосовых связок. Они срабатывают не у всех млекопитающих при иммерсии (полном погружении под воду), да и смыкание можно убрать анестезией. Предотвратить смыкание - это стандартная проблема для всех бронхоскопий, а бронхоскопия - рутинное мероприятие в больницах, то есть проблема недопущения смыкания связок решена.

Как обеспечить дыхание жидкостью? Ведь для этого требуется постоянная перекачка и обновление кислородсодержащей жидкости. Разве могут легкие человека обеспечить ее постоянную перекачку?

В 1987-88 годах я показал, что крупные животные (собаки) с этим могут справиться - за счет движения диафрагмы и межреберных мышц прокачивать жидкость в течение нескольких часов. Мы впервые тогда увидели противоречие западным публикациям - возможно жидкостное дыхание дольше 20 минут, то есть вдыхание кислородсодержащей жидкости и ее эвакуация наружу, при приемлемых показателях газов в крови. В случае с людьми несколько сложнее, чем с животными, но к этому нет непреодолимых препятствий. Да, это достаточно тяжело, такие эксперименты для здоровых и сильных людей, на пожилых со слабыми легкими и сердцем это и не рассчитано. Таких среди подводников нет. В переключении на жидкостное дыхание, а потом на обычное ничего невозможного нет, хотя это порой не просто. «Дьявол» в деталях.

Возможны ли негативные последствия для здоровья потом? Повреждения легких, пневмония? Насколько я понимаю, жидкость должна вымывать из легких сурфактант?

Да, альвеолы легких действительно покрыты изнутри сурфактантом, который удерживает их в развернутом состоянии. При экспериментах с солевыми растворами было установлено, что сурфактант вымывается и альвеолы в легких могли спадаться. Но мы проводили эксперименты с перфторуглеродной жидкостью, а она обладает крайне низкой смачивающей способностью, соответственно сурфактант из альвеол практически не вымывает. Кроме того, можно добавить сурфактант в саму дыхательную жидкость (они бывают разные по составу). В «чистых» перфторуглеродных экспериментах с собаками, с крысами, с мышами у нас не было случаев «спадения» альвеол легких. Следует отметить, что жидкость не всасывается в стенки альвеол и какое-то количество жидкости в легких остается, но она испаряется и выдыхается.

Но тем не менее, в результате экспериментов возникала пневмония, например, у того же Фрэнка Фалейчика?

Фалейчик, кстати, жив-здоров, мой врач-приятель из шведского Каролинского института недавно его видел. Часто дело не только в жидкости, но и в температуре. Мы ведь для имитации спасения подводников работаем в холоде, изначально животное охлаждалось, все тело погружается в воду температурой 10 градусов, а потом еще она заливается в легкие - возникает переохлаждение. И единственное, за счет чего мы можем уменьшить это переохлаждение, - это за счет быстрого подъема к поверхности.

Особенно сложная ситуация для подводников, поскольку ниже 100 метров температура воды не поднимается выше 4 градусов. Даже если нет гибели от переохлаждения в процессе всплытия, есть вероятность гибели от воспаления легких потом. Поэтому бессмысленно делать технологию жидкостного дыхания для комнатных или лабораторных условий.

Нужно решать эту проблему. Как и исключить возможность попадания в легкие каких-то примесей с жидкостью, например, шерсти собак в опыте. Именно поэтому я предложил и опробовал в море три года назад погружать таксу головой вниз в капсуле для морских испытаний. Она дышала оксигенированной жидкостью, потом смогла вывернуться из собачьего гидрокостюма и хлебнула много холодной морской воды.

Первые опыты на крупных собаках в лаборатории ВНИИ пульмонологии в 1987 году. Виден монитор состояния собаки и забор пробы дыхательной жидкости на этапе заполнения легких.

Личный архив Андрея Филиппенко

Еще одна проблема связана с самой жидкостью. В ранних экспериментах с солевыми растворами животные часто гибли, поскольку не могли вернуться обратно к дыханию воздухом. Не дает таких осложнений при адекватной методике чистая перфторуглеродная жидкость. Кстати, даже обученный для презентации первым лицам государства сотрудник ФПИ в представленном на весь мир видео оговорился и назвал ее перфтораном, невольно сделав рекламу нашему уникальному по возрасту препарату. Тут критически важна именно чистота жидкости, она должна быть чище, чем для переливаний в кровь, даже малейшие примеси могут привести к тяжелым последствиям.

Насколько серьезной проблемой может быть нервный синдром высокого давления?

В гипербарическом центре ВМФ города Ломоносова, где я работал с 1979 года, исследовали этот эффект много лет вместе с институтами Академии наук. Пробовали и лекарства, и добавление инертных газов в дыхательную смесь. Помогало и то, и другое снять проявления НСВД. Что будет на сверхбольших глубинах - узнаем, когда к ним будет приближаться человек. Опыты на животных, даже человекообразных обезьянах, мы не можем полностью переносить на людей.

Зачем вообще подводникам может понадобиться технология жидкостного дыхания? Не проще ли сделать средства спасения с обычным дыханием?

Подводников спасать сложно - в момент аварии на лодке может не быть ни света, ни тепла, почти всегда в аварийном отсеке - вода, и часто единственным способом спасения остается свободное всплытие. Один из вариантов спасения состоит в том, что подводники в специальных водолазных костюмах собираются в одном отсеке, который затапливается, а затем они через люк всплывают на поверхность. На практике это срабатывает только на очень небольшой глубине, потому что при повышении давления в отсеке азот начинает интенсивно растворяться в крови, а затем при всплытии пузыри азота выделяются обратно – в кровеносных сосудах, в тканях, возникает множество азотных пузырьков, которые закупоривают сосуды, что может привести к фатальным последствиям. Это и называется декомпрессионной болезнью. Предотвратить ее можно, только выдерживая очень длительный график всплытия в воде или в барокамере, что в условиях аварии, смертельно низкой температуры воды и недостатка кислорода попросту невозможно.

Поэтому промежуток подъема давления в отсеке должен быть максимально короткий - десятки секунд, инструкции допускают в этом случае даже прорыв барабанных перепонок, потому что декомпрессионная болезнь намного опаснее. Даже при учениях подводников, когда они тренируются на свободное всплытие, гибнут люди, как докладывали офицеры ВМС Голландии при мне в штаб-квартире НАТО в Брюсселе.

А в случае серьезной глубоководной аварии, как например, в случае «Курска», шанс на спасение может быть только у одного человека, остальные просто не успеют. Поэтому скорее всего подводники будут ждать спасения извне. Ждать до гибели, если глубина более 200 метров.

В случае использования жидкостного дыхания ситуация выглядит совершенно иначе. Экипаж надевает аппараты для жидкостного дыхания, включает их, а затем они поднимаются, всплывая в спасательном гидрокостюме на поверхность. В дыхательной жидкости нет азота, нет значительного перепада давления между легкими и внешней средой, поэтому риска декомпрессионной болезни нет. Это не значит, что все проблемы спасения людей в море будут решены, но будет решена одна из них - подъем к поверхности.

Но ведь такое устройство должно быть крайне сложным: в нем должны быть системы перекачки жидкости, системы насыщения ее кислородом и удаления из нее углекислого газа, должен быть подогрев жидкости и многое другое. Можно ли вообще использовать такое сложное и ненадежное устройство в экстренной ситуации? Насколько реально ее построить?

Что касается аппарата механической, принудительной вентиляции, то американцы сделали аппарат жидкостного дыхания величиной со шкаф. Мне же пришлось сделать размером с «дипломат» для бумаг. Просто не было возможности его возить на машине в командировки. Наш аппарат в опытах с жидкостным дыханием собак тридцать лет назад вдвое превысил заданную рабочую глубину - 700 метров вместо 350 метров. Был успех. Если толковым людям правильно взяться, можно сделать многое.

Когда же мы делаем длительное принудительное жидкостное дыхание аппаратом водолаза-спасателя, то у него, например, должна быть система подогрева жидкости, прецизионные датчики насыщения кислородом перфторуглерода. Как в ребризерах, с тройным резервированием. И все же не вижу проблем сделать устройство достаточно компактным.

Считаю, что можно сделать простое устройство для подводников, правда, нужны большой опыт и талант, а также граничные условия применения от заказчика. Помня, что этот метод не решает всех проблем при аварии лодки. Это не магия.

Вопрос использования - вопрос тренировки подводников профессионалами. Переключиться на жидкостное дыхание не просто, но эту операцию возможно отработать. В Институте пульмонологии регулярно проводят процедуры заливания и промывки легких жидкостью - она жизненно необходима для больных альвеолярным протеинозом. Без этого они не способны жить дальше. И не всегда эта процедура проводится под общим наркозом, порой его из-за опасности для больного не применяли.

Наконец, когда у нас появилось требование, чтобы человек вышел в космос, сложнейший скафандр «Беркут» сделали сверхбыстро - за девять месяцев, и в полете Леонов его испытал. Наши деды сделали, мы тоже, если возьмемся, сможем!

В каком состоянии эти исследования сейчас?

Это непростой вопрос. Сейчас мы в проекте «Терек-1» повторили результаты 1988 года, когда я по заказу ВМФ СССР вместе с Научно-исследовательским институтом спасания и подводных технологий провел в НИОКР «Олифа МЗ» серию экспериментов с собаками в барокамерах при гипербарии и в лаборатории при нормальном давлении. Мне повторить свой же результат было не сложно, а коллегам из ФПИ и их подопечным из Института медицины труда и Севастопольского государственного института пришлось учиться. И результат есть.

Пока в простом варианте: без видеокамеры снизу и датчиков контроля состояния собаки, при нормальном давлении, в рамках нескольких минут. В таких условиях сложно увидеть собственно жидкостное дыхание.

Если говорить о научных результатах публичного опыта, то здесь их не собрать: сразу после опыта перевозить животное в самолете в Москву или забирать домой - все это непременно сказывается на показателях здоровья. Результаты будут искаженными. Это допустимо только при пилотных, пробных опытах или при отсутствии финансирования. Очень важно содержать животное после реабилитации к норме в стандартных условиях. Нужно ежедневно контролировать его состояние в течение нескольких лет и планировать секцию опытных животных порой через годы.

Хорошо знаю, что сейчас масса проблем с экспериментальными животными, поэтому при планировании темы «Терек-1» в 2016 году я требовал опережающего строительства в Севастополе вивария для животных и создания мест для их пожизненного проживания под присмотром ветеринаров после экстремальных глубоководных экспериментов. Надеюсь, мы увидим образцовый виварий, раз иностранцам показывали такой опыт.

А как скоро можно ожидать экспериментов на людях в России?

Пилотный эксперимент со здоровыми добровольцами, находящимися в сознании, может быть проведен через три месяца. Я 30 лет разрабатываю свою методику самостоятельного жидкостного дыхания. Да, должна быть слаженная команда высококвалифицированных специалистов. За долгие годы успел со многими поработать. Сложилась команда готовых к уникальным экспериментам врачей-исследователей. Волонтерские испытания с военнослужащими отпадают, поскольку нет соответствующего законодательства. В России проводят испытания лекарств и медицинских устройств (в основном западных) на гражданских лицах, но Фонд перспективных исследований не имеет необходимых разрешений на проведение таких исследований, их головной в теме «Терек-1» - московский Институт медицины труда - проблемный по сравнению с другими организациями. Еще в 2014–2015 годах (до моих морских испытаний) их специалисты отрицали возможность успешного самостоятельного жидкостного дыхания крупных животных по своему опыту с животными в теме 2008 года.

Когда это может быть реализовано иностранной группой - сказать не могу, да и вряд ли у кого получится. Шведы и американцы прямо говорили: «Мы после вас».

Горжусь этим, да и тем, что 25 лет хранил и передал прорывную технологию нашей стране. Есть недостатки и трудности, но можно сказать, что тема жидкостного дыхания получила поддержку в России и будет развиваться.

Беседовал Илья Ферапонтов

Научные исследования не прекращаются ни на день, прогресс идёт, давая человечеству всё новые и новые открытия. Сотни учёных и их помощников трудятся на поприще изучения живых существ и синтеза необычных веществ. Целые отделы ставят эксперименты, проверяя различные теории, и порой открытия поражают воображение - ведь то, о чём можно было только мечтать, может стать реальностью. Они развивают идеи, и вопросы о заморозке человека в криокамере с последующей разморозкой через столетие либо о возможности дышать жидкостью для них не просто фантастический сюжет. Их кропотливый труд может претворить эти фантазии в жизнь.

Учёных давно волнует вопрос: может ли человек дышать жидкостью?

Нужно ли человеку жидкостное дыхание

Не жалеются ни силы, ни время, ни денежные средства на такие исследования. И один из таких вопросов, волнующих самые просвещённые умы на протяжении десятилетий, звучит следующим образом - а возможно ли для человека жидкостное дыхание? Смогут ли лёгкие усваивать кислород не , а из специальной жидкости? Для тех, кто усомнится в реальной необходимости такого типа дыхания, можем привести как минимум 3 перспективных направления, где оно послужит человеку добрую службу. Если, конечно же, это смогут реализовать.

  • Первое направление - это погружение на большие глубины. Как известно, при нырянии водолаз испытывает действие давления водной среды, которая в 800 раз плотнее воздуха. И оно возрастает на 1 атмосферу каждые 10 метров глубины. Такое резкое повышение давления чревато очень неприятным эффектом - газы, растворённые в крови, начинают закипать в виде пузырьков. Это явление называют «кессонной болезнью», ею часто страдают те, кто активно занимается . Также при глубоководных заплывах есть риск получить кислородное или азотное отравление, так как в таких условиях эти жизненно необходимые нам газы становятся очень токсичными. Для того чтобы хоть как-то бороться с этим, используют либо специальные смеси для дыхания, либо жёсткие скафандры, поддерживающие внутри себя давление в 1 атмосферу. Но если бы жидкостное дыхание было возможно - оно бы стало третьим, наиболее лёгким решением проблемы, ведь дыхательная жидкость не насыщает организм азотом и инертными газами, да и необходимость в долгой декомпрессии отпадает.
  • Второй путь применения - это медицина. Применения жидкостей для дыхания в ней могло бы спасать жизни недоношенных младенцев, ведь их бронхи недоразвиты и аппараты искусственной вентиляции лёгких могут легко их повредить. Как известно, в утробе матери лёгкие эмбриона заполнены жидкостью и к моменту рождения у него накапливается лёгочный сурфактант - смесь веществ, не дающая слипаться тканям при дыхании воздухом. Но при досрочном рождении дыхание требует у младенца слишком много сил и это может закончиться летальным исходом.

История имеет прецедент использования метода полной жидкостной вентиляции лёгких, и датируется он 1989 годом. Применил его Т. Шаффер, работавший педиатром в Темпльском университете (США), спасая недоношенных детей от смерти. Увы, попытка успехом не увенчалась, трое маленьких пациентов не выжили, но стоит упомянуть, что смерти были вызваны иными причинами, а не самим методом дыхания жидкостью.

С тех пор полностью вентилировать лёгкие человека не осмеливались, но в 90-х годах пациенты с тяжёлой формой воспалений были подвергнуты частичной жидкостной вентиляции. В этом случае лёгкие заполняются лишь частично. Увы, эффективность метода была спорной, так как обычная воздушная вентиляция работала не хуже.

  • Применение в космонавтике. При нынешнем уровне технологий, космонавт при полёте испытывает перегрузки, достигающие 10 g. После этого порога невозможно сохранить не то чтобы работоспособность, но и сознание. Да и нагрузка на организм идёт неравномерно, а по точкам опоры, которые при погружении в жидкость можно исключить - давление будет распространяться одинаково по всем точкам организма. Этот принцип положен в основу проектировки жёсткого скафандра Libelle, наполненного водой и позволяющего повысить предел до 15–20 g, да и то из-за ограничения плотности тканей человека. А если не только погрузить космонавта в жидкость, но и заполнить ею лёгкие, то для него будет возможно легко переносить экстремальные перегрузки далеко за отметкой в 20 g. Не бесконечные, разумеется, но порог будет очень высок, если будет соблюдено одно условие - жидкость в лёгких и вокруг тела должна быть равна по плотности воде.

Зарождение и развитие жидкостного дыхания

Самые первые эксперименты датируются 60-ми годами прошлого столетия. Первыми испытали зарождающуюся технологию жидкостного дыхания лабораторные мыши и крысы, вынужденные дышать не воздухом, а солёным раствором, который был под давлением в 160 атмосфер. И они дышали! Но была проблема, которая не дала им выжить в такой среде долго - жидкость не позволяла отводить углекислый газ.

Но на этом эксперименты не прекратились. Далее, начали проводить исследования органических веществ, чьи атомы водорода заменялись атомами фтора - так называемых перфторуглеводородов. Результаты были намного лучше, чем у древней и примитивной жидкости, ведь перфторуглеводород инертен, не усваивается организмом, прекрасно растворяет кислород и водород. Но до совершенства было далеко и исследования в этом направлении продолжились.

Сейчас самым лучшим достижением в этой сфере является перфлуброн (коммерческое название - «Ликвивент»). Свойства этой жидкости поразительны:

  1. Альвеолы раскрываются лучше при попадании в лёгкие этой жидкости и газообмен улучшается.
  2. Эта жидкость может нести в 2 раза больше кислорода по сравнению с воздухом.
  3. Низкая температура кипения позволяет удалять её из лёгких выпариванием.

Но наши лёгкие не предназначены для полностью жидкостного дыхания. Если заполнять их перфлуброном полностью - потребуется мембранный оксигенатор, нагревающий элемент и вентиляция воздухом. И не стоит забывать, что эта смесь в 2 раза гуще воды. Потому применяют смешанное вентилирование, при котором лёгкие заполняются жидкостью лишь на 40%.

Но почему мы не можем дышать жидкостью? Всё из-за углекислого газа, который очень плохо удаляется в жидкостной среде. Человек весом в 70 кг должен прогонять 5 л смеси через себя ежеминутно, и это при спокойном состоянии. Потому, хоть наши лёгкие технически способны извлекать кислород из жидкостей, они слишком слабы. Так что можно лишь надеяться на исследования будущего.

Вода как воздух

Для того чтобы наконец с гордостью объявить миру - «Теперь человек может дышать под водой!» - учёные порой разрабатывали поразительные устройства. Так, в 1976 году биохимики из Америки создали чудо-устройство, способное регенерировать кислород из воды и обеспечивать им ныряльщика. При достаточной ёмкости батарей ныряльщик мог находиться и дышать на глубине практически бесконечно.

А началось всё с того, что ученые начали исследования на основе того факта, что гемоглобин одинаково хорошо доставляет воздух как из жабр, так и из лёгких. Ими была использована собственная венозная кровь, смешанная с полиуретаном - её погружали в воду и эта жидкость поглощала кислород, который щедро растворён в воде. Далее, кровь была заменена спецматериалом и в итоге получился прибор, что действовал как обычные жабры любой рыбёшки. Судьба изобретения такова: его приобрела некая компания, потратив на это 1 миллион долларов, и с тех пор о приборе ничего не было слышно. И в продажу, разумеется, он не поступил.

Но не это является главной целью учёных. Их мечта не устройство для дыхания, они хотят научить самого человека дышать жидкостью. И попытки осуществить эту мечту не оставлены до сих пор. Так, один из НИИ России, например, провёл испытания по жидкостному дыханию на добровольце, имеющем врождённую патологию - отсутствие гортани. А это означало, что у него просто отсутствовала реакция организма на жидкость, при которой попадание малейшей капли воды на бронхи сопровождается сжатием глоточного кольца и удушьем. Так как этой мышцы у него просто не было, эксперимент прошёл удачно. Ему залили в лёгкие жидкость, которую он перемешивал на протяжении эксперимента при помощи движений живота, после чего её спокойно и безопасно откачали. Характерно, что солевой состав жидкости соответствовал солевому составу крови. Это можно считать успехом, и учёные утверждают, что вскоре найдут способ жидкостного дыхания, доступный людям без патологий.

Так миф или реальность?

Несмотря на упорство человека, страстно желающего покорить все возможные среды обитания, природа пока сама распоряжается, где кому жить. Увы, как бы много времени ни ушло на исследования, сколько миллионов бы ни потратили - но вряд ли человеку суждено дышать под водой так же хорошо, как и на суше. Люди и морские обитатели, конечно, имеют немало общего, но различий всё-таки намного больше. Человек-амфибия не вынес бы условий океана, а если бы сумел приспособиться - то дорога назад, на сушу, была бы для него закрыта. И как с аквалангами водолазы, так бы на пляж выходили бы в водных скафандрах люди-амфибии. И потому, чтобы не говорили энтузиасты, вердикт учёных пока твёрд и неутешителен - долгая жизнедеятельность человека под водой невозможна, идти против матери-природы в этом плане неразумно и все попытки жидкостного дыхания обречены на провал.

Но не стоит унывать. Хоть дно морское никогда не станет для нас родным домом, у нас есть все механизмы организма и технические возможности, для того чтобы бывать на нём частыми гостями. Так стоит ли об этом грустить? Ведь эти среды в определённой мере уже покорены человеком и теперь перед ним лежат бездны космического пространства.

И пока можно с уверенностью сказать, что глубины океана станут для нас прекрасным рабочим местом. Но упорство может привести к очень тонкой грани реального дыхания под водой, стоит лишь трудиться над решением этой задачи. А каков будет ответ на вопрос, менять ли наземную цивилизацию на подводную, зависит только лишь от самого человека.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные