Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Общая форма записи волнового процесса

Определение 1

Допустим, что физическая величина $s$ распространяется в направлении $X$ со скоростью $v$. Данная величина ($s$) может быть смещением, скоростью кусочков резинового шнура, когда в шнуре проходит механическая волна. Если мы имеем дело с электромагнитной волной, то под $s$ можно понимать напряженность электрического поля или индукцию магнитного поля и т.д. Общая форма записи волнового процесса представляется как:

где $t$ -- время, $x$ -- координата точки, которую рассматривают, $f$ - символ функции.

Любая произвольная функция, имеющая исключительно аргумент $\left(t-\frac{x}{v}\right)$, отражает волновой процесс.

Положим, что наблюдатель перемещается по $оси X$ со скоростью $v$. Его координата может быть определена как:

Подставим правую часть выражения (2) в формулу (1) вместо переменной $x$, получим:

Из выражения (3) следует, что функция $f\left(-\frac{x_0}{v}\right)$ не зависит от времени, что означает $s$ распространяется со скоростью $v$.

Аналогично можно получить, что если процесс записан как:

то $s$ распространяется против избранной $оси X$. Если положить, что $t=0$, то из выражений (1) и (4) имеем:

Выражение (5) определяет распределение $s$ в начальный момент времени. В том случае, если $s$ напряженность магнитного поля в электромагнитной волне, то формула (5) - задает распределение магнитного поля в пространстве при $t=0$. Получается, что вид функции $f$ зависит от начальных условий процесса.

Итак, выражения (1) и (4) являются общим выражением для волны, которая распространяется вдоль $оси X$.

Волновое уравнение

Определение 2

Функция $s$ удовлетворяет простому дифференциальному уравнению. Для его нахождения продифференцируем выражения (1) и (4), объединив их, используя знак $\mp $, дважды по координате $x$:

\[\frac{{\partial }^2s}{\partial x^2}=\frac{1}{v^2}f^{""}\left(6\right).\]

Вторая частная производная по времени будет иметь вид:

\[\frac{{\partial }^2s}{\partial t^2}=f^{""}\left(7\right).\]

Используя выражения (6) и (7) запишем:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\frac{\partial^2s}{\partial x^2}\left(8\right).\]

Уравнение (8) называют волновым . В том случае, если волна распространяется не в одном, во всех направлениях пространства, то волновое уравнение примет вид:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\left(\frac{{\partial }^2s}{\partial x^2}+\frac{{\partial }^2s}{\partial y^2}+\frac{{\partial }^2s}{\partial z^2}\right)\left(9\right).\]

Замечание

В том случае, если физическая величина распространяется в виде волны, то она должна удовлетворять волновому уравнению. Справедливо обратное утверждение: Если какая - либо величина подчиняется волновому уравнению, то она распространяется как волна. Скорость распространения волны будет равна квадратному корню из коэффициента, который стоит при сумме пространственных производных.

Электромагнитные волны

Рассмотрим электромагнитное поле в однородном диэлектрике ($j_x=j_y=j_z=0$). Причем будем считать задачу одномерной, то есть предположим, что векторы $\overrightarrow{E}\ и\ \overrightarrow{H}$ зависят только от одной координаты $x$ и времени $t$. Такая ситуация означает, что все пространство мы можем разделить на тонике слои (толщина слоя стремится к нулю), плоские слои, внутри них $\overrightarrow{E}\ и\ \overrightarrow{H}$ принимают одно и тоже значение во всех точках. Данная задача соответствует плоской электромагнитной волне. Для описания электромагнитного поля используем систему уравнений Максвелла:

Для одномерного случая система уравнений Максвелла существенно упрощается, так как все производные по $y$ и $z$ равны нулю. Записав уравнение (10) в скалярном представлении:

Становится очевидным, что в однородной среде для одномерного случая:

Аналогично из уравнения (11) получаем, что:

Выражения (15) и (16) означают, что данные составляющие электромагнитного поля не зависят от времени. А из уравнений (12) и (13) следует, что $D_x$и $B_x$ - не зависят от координаты. В результате мы имеем, что $D_x=const,\ B_x=const$.

Остальные уравнения из группы (14) примут вид:

От группы уравнений в скалярной форме, которые представляют выражение (11), остаются:

Уравнения (17) и (18) сгруппируем как две независимые части. Первая - связывающая $y$-составляющую электрического поля и $z$-составляющую магнитного поля:

Вторая часть связывает $z$-компоненту электрического поля и $y$-компоненту магнитного поля:

Получается, что переменное (во времени) электрическое поле ($D_y$) порождает одну $z$-составляющую магнитного поля ($H_z$), переменное магнитное поле $B_z$ вызывает появление электрического поля направленного по $оси Y$ ($E_y$) (уравнения 19). То есть в электромагнитном поле электрическое и магнитные поля перпендикулярны друг другу. Аналогичный вывод можно сделать из пары (20).

Для одномерного случая систему уравнений Максвелла можно записать в виде:

Электрическое и магнитные поля могут существовать как волны, так как из уравнения Максвелла следует существование этих волн. Так как для напряженности электрического поля выполняется уравнение вида:

Следовательно, решение этого уравнения можно представить как:

Так как для напряженности магнитного поля выполняется уравнение вида:

следовательно, решение этого уравнения можно представить как:

Пример 1

Задание: Покажите, на примере одномерного случая электромагнитного поля, что из уравнений Максвелла следует волновой характер электромагнитного поля.

Решение:

В качестве основы для решения задачи используем уравнения Максвелла для одномерного случая:

\[\frac{\partial D}{\partial t}=-\frac{\partial H}{\partial x},\ \frac{\partial B}{\partial t}=-\frac{\partial E}{\partial x}\left(1.1\right).\]

Исключим из уравнений (1.1) магнитное поле $H$. С этой целью умножим первое уравнение на $\mu {\mu }_0$ и возьмем частную производную по времени от обеих частей равенства и, используя выражение: $D=\varepsilon_0\varepsilon E$, заменим электрическую индукцию на напряженность соответствующего поля, получим:

\[{\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.2\right).\]

Второе уравнение в группе (1.1) продифференцируем по $x$, заменим индукцию магнитного поля на его напряженность, используя выражение: $B=\mu {\mu }_0H$, при этом имеем:

\[\frac{{\partial }^2E}{\partial x^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.3\right).\]

Как мы видим, правые части выражений (1.2) и (1.3) одинаковы, следовательно, можно считать, что:

\[\frac{{\partial }^2E}{\partial x^2}={\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}\to \frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(1.4\right).\]

Аналогичное уравнение легко получить для напряженности магнитного поля, если исключить напряженность электрического поля. Уравнение (1.4) -- есть волновое уравнение.

Ответ: Волновое уравнение для напряженности электрической составляющей электромагнитного поля получено непосредственно из уравнений Максвелла для одномерной задачи.

Пример 2

Задание: Чему равна скорость ($v$) распространения электромагнитной волны ?

Решение:

За основу решения примем волновое уравнение для напряженности электрического поля в плоской электромагнитной волне:

\[\frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(2.1\right).\]

Скоростью распространения волны является корень квадратный из коэффициента, который находится перед $\frac{{\partial }^2E}{\partial x^2}$ в волновом уравнении, следовательно:

где $c$ -- скорость распространения света в вакууме.

Ответ: $v=\frac{c}{\sqrt{\mu \varepsilon}}.$

Группой дифференциальных уравнений. Дифференциальные уравнения, которым должен удовлетворять каждый из векторов поля отдельно, можно получить исключением остальных векторов. Для области поля, которая не содержит свободных зарядов и токов ($\overrightarrow{j}=0,\ \rho =0$) уравнения для векторов $\overrightarrow{B}$ и $\overrightarrow{E}$ имеют вид:

Уравнения (1) и (2) - это обычные уравнения волнового движения, которые обозначают, что световые волны распространяются в среде со скоростью ($v$) равной:

Примечание 1

Надо заметить, что понятие скорости электромагнитной волны имеет определенный смысл лишь в связи с волнами простого вида, например плоскими. Скорость $v$ не является скоростью распространения волны в случае произвольного решения уравнений (1) и (2), так как эти уравнения допускают решения в виде стоячих волн.

В любой волновой теории света элементарным процессом считают гармоническую волну в пространстве и времени. Если частота этой волны лежит в интервале $4\cdot {10}^{-14}\frac{1}{c}\le \nu \le 7,5\cdot {10}^{-14}\frac{1}{c}$, такая волна вызывает у человека физиологическое ощущение определенного цвета.

Для прозрачных веществ диэлектрическая проницаемость $\varepsilon $ обычно больше единицы, магнитная проницаемость среды $\mu $ почти равна единице, получается, в соответствии с уравнением (3) скорость $v$ меньше скорости света в вакууме. Что было впервые экспериментально показано для случая распространения света в воде учеными Фуко и Физо .

Обычно определяют не саму величину скорости ($v$), а отношение $\frac{v}{c}$, для чего пользуются законом преломления . В соответствии с данным законом при падении плоской электромагнитной волны на плоскую границу, которая разделяет две однородные среды, отношение синуса угла ${\theta }_1$ падения к синусу угла преломления ${\theta }_2$ (рис.1) постоянно и равно отношению скоростей распространения волн в двух средах ($v_1\ и{\ v}_2$):

Значение постоянного отношения выражения (4) обычно обозначают как $n_{12}$. Говорят, что $n_{12}$ -- относительный показатель преломления второго вещества по отношению к первому, который испытывает волновой фронт (волна) при прохождении из первой среды во вторую.

Рисунок 1.

Определение 1

Абсолютным показателем преломления (просто показателем преломления) среды $n$ называют показатель преломления вещества по отношению к вакууму:

Вещество, имеющее больший показатель преломления является оптически более плотным. Относительный показатель преломления двух веществ ($n_{12}$) связан с их абсолютными показателями ($n_1,n_2$) как:

Формула Максвелла

Определение 2

Максвелл получил, что показатель преломления среды зависит от ее диэлектрических и магнитных свойств. Если в формулу(5) подставить выражение для скорости распространения света из уравнения (3), то мы получим:

\ \

Выражение (7) называется формулой Максвелла . Для большинства немагнитных прозрачных веществ, которые рассматриваются в оптике магнитная проницаемость вещества приблизительно можно считать равной единице, поэтому часто равенство (7) применяют в виде:

Часто предполагается, что $\varepsilon $ является постоянной величиной. Однако нам хорошо известны опыты Ньютона с призмой по разложению света, в результате этих экспериментов становится очевидным, что показатель преломления зависит от частоты света. Следовательно, если считать, что формула Максвелла справедлива, то следует признать, что диэлектрическая проницаемость вещества зависит от частоты поля. Связь $\varepsilon $ с частотой поля можно объяснить только в том случае, если принять во внимание атомное строение вещества.

Однако надо сказать, что формула Максвелла с постоянной диэлектрической проницаемостью вещества, в некоторых случаях может быть использована как хорошее приближение. Примером могут служить газы с простой химической структурой, в которых нет существенной дисперсии света, что означает, слабую зависимость оптических свойств от цвета. Формула (8), также хорошо работает для жидких углеводородов. С другой стороны, у большинства твердых тел, например у стекол, и большой части жидкостей наблюдается сильное отклонение от формулы (8), если считать $\varepsilon $ постоянной.

Пример 1

Задание: Какова концентрация свободных электронов в ионосфере, если известно, что для радиоволн с частотой $\nu$ показатель ее преломления равен $n$.

Решение:

За основу решения задачи возьмем формулу Максвелла:

\[\varepsilon =1+\varkappa =1+\frac{P}{{\varepsilon }_0E}\left(1.2\right),\]

где $\varkappa $ -- диэлектрическая восприимчивость, P - мгновенное значение поляризованности. Из (1.1) и (1.2) следует, что:

В том случае, если концентрация атомов в ионосфере равна $n_0,$ то мгновенное значение поляризованности равно:

Из выражений (1.3) и (1.4) имеем:

где $\omega $ -- циклическая частота. Уравнение вынужденных колебаний электрона без учета силы сопротивления можно записать как:

\[\ddot{x}+{{\omega }_0}^2x=\frac{q_eE_0}{m_e}cos\omega t\left(1.7\right),\]

где $m_e$ -- масса электрона, $q_e$ -- заряд электрона. Решением уравнения (1.7) служит выражение:

\ \

Нам известна частота радиоволн, следовательно, можно найти циклическую частоту:

\[\omega =2\pi \nu \left(1.10\right).\]

Подставим в (1.5) правую часть выражения (1.9) вместо $x_{max}$ и используем (1.10), получим:

Ответ: $n_0=\frac{E_0m_e4\pi ^2\nu ^2}{{q_e}^2}\left(1-n^2\right).$

Пример 2

Задание: Объясните, почему формула Максвелла противоречит некоторым экспериментальным данным.

Решение:

Из классической электромагнитной теории Максвелла следует, что показатель преломления среды можно выразить как:

где в оптической области спектра для большинства веществ можно считать, что $\mu \approx 1$. Получается, что показатель преломления для вещества должен быть постоянной величиной, так как $\varepsilon $ -- диэлектрическая проницаемость среды постоянна. Тогда как эксперимент показывает, что показатель преломления зависит от частоты. Трудности, которые возникли перед теорией Максвелла в данном вопросе, устраняет электронная теория Лоренца. Лоренц рассматривал дисперсию света как результат взаимодействия электромагнитных волн с заряженными частицами, которые входят в состав вещества и совершают вынужденные колебания в переменном электромагнитном поле волны света. Используя свою гипотезу, Лоренц получил формулу, связывающую показатель преломления с частотой электромагнитной волны (см. пример 1).

Ответ: Проблема теории Максвелла в том, что она является макроскопической и не рассматривает структуру вещества.

Любой колебательный контур излучает энергию. Изменяющееся электрическое поле возбуждает в окружающем пространстве переменное магнитное поле, и наоборот. Математические уравнения, описывающие связь магнитного и электрического полей, были выведены Максвеллом и носят его имя. Запишем уравнения Максвелла в дифференциальной форме для случая, когда отсутствуют электрические заряды () и токи (j = 0 ):

Величины и - электрическая и магнитная постоянные, соответственно, которые связаны со скоростью света в вакууме соотношением

Постоянные и характеризуют электрические и магнитные свойства среды, которую мы будем считать однородной и изотропной.

В отсутствие зарядов и токов невозможно существование статических электрического и магнитного полей. Однако переменное электрическое поле возбуждает магнитное поле, и наоборот, переменное магнитное поле создает электрическое поле. Поэтому имеются решения уравнений Максвелла в вакууме, в отсутствие зарядов и токов, где электрические и магнитные поля оказываются неразрывно связанными друг с другом. В теории Максвелла впервые были объединены два фундаментальных взаимодействия, ранее считавшихся независимыми. Поэтому мы говорим теперь об электромагнитном поле .

Колебательный процесс в контуре сопровождается изменением окружающего его поля. Изменения, происходящие в окружающем пространстве, распространяются от точки к точке с определенной скоростью, то есть колебательный контур излучает в окружающее его пространство энергию электромагнитного поля.

При строго гармоническом изменении во времени векторов и электромагнитная волна называется монохроматической.

Получим из уравнений Максвелла волновые уравнения для векторов и .

Волновое уравнение для электромагнитных волн

Как уже отмечалось в предыдущей части курса, ротор (rot) и дивергенция (div) - это некоторые операции дифференцирования, производимые по определенным правилам над векторами. Ниже мы познакомимся с ними поближе.

Возьмем ротор от обеих частей уравнения

При этом воспользуемся доказываемой в курсе математики формулой:

где - введенный выше лапласиан. Первое слагаемое в правой части равно нулю в силу другого уравнения Максвелла:

Получаем в итоге:

Выразим rotB через электрическое поле с помощью уравнения Максвелла:

и используем это выражение в правой части (2.93). В результате приходим к уравнению:

Учитывая связь

и вводя показатель преломления среды

запишем уравнение для вектора напряженности электрического поля в виде:

Сравнивая с (2.69), убеждаемся, что мы получили волновое уравнение, где v - фазовая скорость света в среде :

Взяв ротор от обеих частей уравнения Максвелла

и действуя аналогичным образом, придем к волновому уравнению для магнитного поля:

Полученные волновые уравнения для и означают, что электромагнитное поле может существовать в виде электромагнитных волн, фазовая скорость которых равна

В отсутствие среды (при ) скорость электромагнитных волн совпадает со скоростью света в вакууме.

Основные свойства электромагнитных волн

Рассмотрим плоскую монохроматическую электромагнитную волну, распространяющуюся вдоль оси х:

Возможность существования таких решений следует из полученных волновых уравнений. Однако напряженности электрического и магнитного полей не являются независимыми друг от друга. Связь между ними можно установить, подставляя решения (2.99) в уравнения Максвелла. Дифференциальную операцию rot , применяемую к некоторому векторному полю А можно символически записать как детерминант:

Подставляя сюда выражения (2.99), зависящие только от координаты x , находим:

Дифференцирование плоских волн по времени дает:

Тогда из уравнений Максвелла следует:

Отсюда следует, во-первых, что электрическое и магнитное поля колеблются в фазе:

Иными словами и в изотропной среде,

Тогда можно выбрать координатные оси так, чтобы вектор был направлен вдоль оси у (рис. 2.27):


Рис. 2.27. Колебания электрического и магнитного полей в плоской электромагнитной волне

В этом случае уравнения (2.103) приобретают вид:

Отсюда следует, что вектор направлен вдоль оси z:

Иначе говоря, векторы электрического и магнитного поля ортогональны друг другу и оба - направлению распространения волны. С учетом этого факта уравнения (2.104) еще более упрощаются:

Отсюда вытекает обычная связь волнового вектора, частоты и скорости:

а также связь амплитуд колебаний полей:

Отметим, что связь (2.107) имеет место не только для максимальных значений (амплитуд) модулей векторов напряженности электрического и магнитного поля волны, но и для текущих - в любой момент времени.

Итак, из уравнений Максвелла следует, что электромагнитные волны распространяются в вакууме со скоростью света. В свое время этот вывод произвел огромное впечатление. Стало ясно, что не только электричество и магнетизм являются разными проявлениями одного и того же взаимодействия. Все световые явления, оптика, также стали предметом теории электромагнетизма. Различия в восприятии человеком электромагнитных волн связаны с их частотой или длиной волны.

Шкала электромагнитных волн представляет собой непрерывную последовательность частот (и длин волн) электромагнитного излучения. Теория электромагнитных волн Максвелла позволяет установить, что в природе существуют электромагнитные волны различных длин, образованные различными вибраторами (источниками). В зависимости от способов получения электромагнитных волн их разделяют на несколько диапазонов частот (или длин волн).

На рис. 2.28 представлена шкала электромагнитных волн.


Рис. 2.28. Шкала электромагнитных волн

Видно, что диапазоны волн различных типов перекрывают друг друга. Следовательно, волны таких длин можно получить различными способами. Принципиальных различий между ними нет, поскольку все они являются электромагнитными волнами, порожденными колеблющимися заряженными частицами.

Уравнения Максвелла приводят также к выводу о поперечности электромагнитных волн в вакууме (и в изотропной среде): векторы напряженности электрического и магнитного полей ортогональны друг другу и направлению распространения волны.

Дополнительная информация

http://www.femto.com.ua/articles/part_1/0560.html – Волновое уравнение. Материал из Физической Энциклопедии.

http://fvl.fizteh.ru/courses/ovchinkin3/ovchinkin3-10.html – Уравнения Максвелла. Видеолекции.

http://elementy.ru/trefil/24 – Уравнения Максвелла. Материал из «Элементов».

http://nuclphys.sinp.msu.ru/enc/e092.htm – Очень кратко об уравнениях Максвелла.

http://telecomclub.org/?q=node/1750 – Уравнения Максвелла и их физический смысл.

http://principact.ru/content/view/188/115/ – Кратко об уравнениях максвелла для электромагнитного поля.

Эффект Доплера для электромагнитных волн

Пусть в некоторой инерциальной системе отсчета К распространяется плоская электромагнитная волна. Фаза волны имеет вид:

Наблюдатель в другой инерциальной системе отсчета К" , движущейся относительно первой со скоростью V вдоль оси x , также наблюдает эту волну, но пользуется другими координатами и временем: t", r". Связь между системами отсчета дается преобразованиями Лоренца:

Подставим эти выражения в выражение для фазы , чтобы получить фазу волны в движущейся системе отсчета:

Это выражение можно записать как

где и - циклическая частота и волновой вектор относительно движущейся системы отсчета. Сравнивая с (2.110), находим преобразования Лоренца для частоты и волнового вектора:

Для электромагнитной волны в вакууме

Пусть направление распространения волны составляет в первой системе отсчета угол с осью х:

Тогда выражение для частоты волны в движущейся системе отсчета принимает вид:

Это и есть формула Доплера для электромагнитных волн .

Если , то наблюдатель удаляется от источника излучения и воспринимаемая им частота волны уменьшается:

Если , то наблюдатель приближается к источнику и частота излучения для него увеличивается:

При скоростях V << с можно пренебречь отклонением квадратного корня в знаменателях от единицы, и мы приходим к формулам, аналогичным формулам (2.85) для эффекта Доплера в звуковой волне.

Отметим существенную особенность эффекта Доплера для электромагнитной волны. Скорость движущейся системы отсчета играет здесь роль относительной скорости наблюдателя и источника. Полученные формулы автоматически удовлетворяют принципу относительности Эйнштейна, и с помощью экспериментов невозможно установить, что именно движется - источник или наблюдатель. Это связано с тем, что для электромагнитных волн отсутствует среда (эфир), которая играла бы ту же роль, что и воздух для звуковой волны.

Заметим также, что для электромагнитных волн имеет место поперечный эффект Доплера . При частота излучения изменяется:

в то время как для звуковых волн движение в направлении, ортогональном распространению волны, не приводило к сдвигу частот. Этот эффект прямо связан с релятивистским замедлением времени в движущейся системе отсчета: наблюдатель на ракете видит увеличение частоты излучения или, в общем случае, ускорение всех процессов, происходящих на Земле.

Найдем теперь фазовую скорость волны

в движущейся системе отсчета. Имеем из преобразований Лоренца для волнового вектора:

Подставим сюда соотношение:

Получаем:

Отсюда находим скорость волны в движущейся системе отсчета:

Мы обнаружили, что скорость волны в движущейся системе отсчета не изменилась и по-прежнему равна скорости света с . Отметим всё же, что, при корректных выкладках, это не могло не получиться, так как инвариантность скорости света (электромагнитных волн) в вакууме есть основной постулат теории относительности уже «заложенный» в использованные нами преобразования Лоренца для координат и времени (3.109).

Пример 1. Фотонная ракета движется со скоростью V = 0.9 с , держа курс на звезду, наблюдавшуюся с Земли в оптическом диапазоне (длина волны мкм ). Найдем длину волны излучения, которую будут наблюдать космонавты.

Длина волны обратно пропорциональна частоте колебаний. Из формулы (2.115) для эффекта Доплера в случае сближения источника света и наблюдателя находим закон преобразования длин волн:

откуда следует результат:

По рис. 2.28 определяем, что для космонавтов излучение звезды сместилось в ультрафиолетовый диапазон.

Энергия и импульс электромагнитного поля

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей электрического и магнитного полей.

В основе теории Максвелла лежат рас­смотренные четыре уравнения:

1. Электрическое поле мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B оп­ределяется выражением, то цир­куляция вектора напряженности суммар­ного поляЭто уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н : Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами, либо переменными электрическими полями.

3. Теорема Гаусса для поля D : Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью, то формула запишется в виде

4. Теорема Гаусса для поля В: Итак,полная система уравнений Максвел­ла в интегральной форме: Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь:D = 0 E , В=  0 Н, j =E , где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме :

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.

Для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа:

-оператор Лапласа.

Т.е. электро­магнитные поля могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением (1) v - фазовая ско­рость, где с= 1/ 0  0 ,  0 и  0 - соответственно электрическая и магнитная постоянные,  и  - соответственно электрическая и магнитная проницаемости среды.

В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

При вычислении скорости распростра­нения электромагнитного поля по формуле (1) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторыЕ и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (рис. 227) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е , Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением  0 = 0 Н. (2)

Этим уравнениям удов­летворяют, в частности, плоскиемонохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями Е у 0 cos(t-kx+), (3) H z = H 0 cos (t-kx+), (4), где е 0 и Н 0 - соответственно амплитуды напряженностей электрического и магнит­ного полей волны,  - круговая частота волны, k=/v- волновое число, - начальные фазы колебаний в точках с ко­ординатой х= 0. В уравнениях (3) и (4)  одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: