Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Прежде всего, нужно сказать о том, что о паропроницаемых (дышащих) и пароНЕпроницаемых (не дышащих) стенах я буду рассуждать не в категориях хорошо\плохо, а буду их рассматривать как два альтернативных варианта. Каждый из этих вариантов совершенно правильный, если его выполнить со всеми полагающимися требованиями. То есть, я не отвечаю на вопрос "нужны ли паропроницаемые стены", а рассматриваю оба варианта.

Итак, паропроницаемые стены дышат, пропускают через себя воздух (пар), а пароНЕпроницаемые стены не дышат, не пропускают через себя воздух (пар). Паропроницаемые стены сделаны только из паропроницаемых материалов. ПароНЕпроницаемые стены содержат в своей конструкции хотя бы один слой пароНЕпроницаемого материала (этого достаточно, чтобы вся стена в целом стала пароНЕпроницаемой). Все материалы делятся на паропроницаемые и пароНЕпроницаемые, это не хорошо, не плохо,- это такая данность:-).

Теперь посмотрим, что всё это означает, когда эти стены включаются в реальный дом (квартиру). Конструктивные возможности паропроницаемых и пароНЕпроницаемых стен мы в этом вопросе не рассматриваем. И такую, и такую стену можно сделать прочной, жесткой и тд. Основные различия получаются в таких двух вопросах:

Теплопотери. Через паропроницаемые стены, естесственно, происходят дополнительные теплопотери (вместе с воздухом уходит и тепло). Надо сказать, что эти теплопотери совсем небольшие (5-7% от общих). Величина их влияет на толщину теплоизоляции и мощность отопления. При расчете толщины (стены, если она без утеплителя, или самого утеплителя), учитывается коэффициент паропроницаемости. При расчете теплопотерь для подбора отопления тоже учитывается потери тепла, вследствие паропроницаемости стен. То есть, эти потери никуда не теряются, их учитывают при расчете того, на что они влияют. И, более того, мы уже сделали достаточно таких расчетов (по толщине утеплителя и теплопотерь для расчета мощности отопления), и вот что видно: разница в цифрах есть, но она такая маленькая, что реально не может повлиять ни на толщину утеплителя, ни на мощность отопительного прибора. Объясню: если при паропроницаемой стене нужно, например, 43 мм утеплителя, а при пароНЕпроницаемой- 42мм, то это все равно 50мм, в обоих вариантах. То же самое с мощностью котла, если по теплопотерям общим, понятно, что нужен котел на 24кВт, например, то только из-за паропроницаемости стен не получится следующий по мощности котел.

Вентиляция. Паропроницаемые стены участвуют в воздухообмене в помещении, а пароНЕпроницаемые стены- не участвуют. В помещении должен быть приток и вытяжка, они должны соответствовать норме и быть примерно равны. Для того, чтобы понять, сколько в доме\квартире должно быть притока и вытяжки (в м3 в час) делается расчет по вентиляции. В нем учитываются все возможности притока и вытяжки, считается норма для этого дома\квартиры, сравниваются реалии и норма, и рекомендуются методы доведения до нормы мощности притока и вытяжки. Так вот что получается по итогу этих расчетов (мы их уже тоже немало сделали): как правило, в современных домах не хватает притока. Это получается потому, что современные окна паронепроницаемые. Раньше эту вентиляцию никто для частного жилья не считал, так как приток нормально обеспечивался старыми деревянными окнами, негерметичными дверями, стенами с щелями, и тд. А теперь, если взять новое строительство, так почти все дома с пластиковыми окнами, и не менее половины с пароНЕпроницаемыми стенами. И притока воздуха в таких домах (постоянного) практически нет. Вот, можно посмотреть примеры расчетов по вентиляции, в темах:

Конкретно по этим домам видно, что приток через стены (если они паропроицаемые), составит только около 1\5 требуемого притока. То есть, вентиляцию надо нормально проектировать (считать) по любому, какие не были бы стены и окна. Только паропроницаемые стены, и всё,- нужного притока всё равно не обеспечивают.

Иногда вопрос о паропроницании стен становится актуальным в такой ситуации. В старом доме\квартире, который жил себе нормально с паропроницаемыми стенами, старыми деревянными окнами, и с одним вытяжным каналом в кухне, начинают менять окна (на пластиковые), потом, например, стены утепляют пенопластом (снаружи, как положено). Начинаются мокрые стены, плесень и тд. Вентиляция перестала работать. Притока нет, без притока вытяжка не работает. Отсюда, как мне кажется, вырос миф об "ужасном пенопласте", которым как только утеплить стену,- сразу начнется плесень. А дело тут в комплексе вопросов по вентиляции и утеплению, а не в "ужасности" того или иного материала.

По поводу того, что Вы пишете "невозможно сделать герметичные стены". Это не совсем так. Можно вполне их делать (с определенным приближением к герметичности), и их делают. Мы сейчас как раз готовим статью о таких домах, где полностью герметичные окна\стены\двери, весь воздух подается через систему рекуперации, и тд. Это принцип так называемых "пассивных" домов, об этом мы скоро расскажем.

Таким образом, вот вывод: выбирать можно и паропроницаемую стену, и пароНЕпроницаемую. Главное, грамотно решить все сопутствующие вопросы: по правильной теплоизоляции и компенсации теплопотерь, и по вентиляции.

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка?, ?
Металлы?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Экструдированный или экструзионный пенополистирол (ЭПС, ЭППС, XPS), стиропор (ПСВ / EPS) и пенопласт (ПСБ-С, пенополистирол, стиропор) широко применяются в России в качестве теплоизоляционного материала (утепителя). К сожалению, производители зачастую умалчивают о том, что из-за отсутствия паропроницаемости данные материал могут приводить к появлению грибков и плесени. Особенно это касается не паропроницаемого экструзионного пенопполистирола, которым по этой причине утеплять кирпичные и бетонные стены не рекомендуется.

Но недавно мне попался на глаза премиальный коттеджный поселок под Питером, в котором применялись импортные материалы, в том числе бельгийский кирпич и утеплитель пенополистирол Neopor. Я был шокирован тем, что такие дома назвали экодомами. Пассивный дом при применении 400 мм кирпичной кладки, а также 350 мм утеплителя Neopor (Неопор) на стенах, 300 мм экструзионного пенополистирола под фундаментной плитой, 400 мм утеплителя Neopor (Неопор) на плитах перекрытия в разбежку - это конечно отлично. Тем более, что германскому стандарту Passive House в России соответствует очень небольшое количество домов. Но экодом...

К тому же, странным казался выбор именно пенополистирола, пусть и от германского производителя BASF, в качестве утеплителя. Возможно, что это стремление сделать все по западной кальке и из западных материалов. Но мне гораздо более разумным кажется применение в из кирпича (пеностекольной крошки) или .

Оказалось, что Neopor (Неопор) - это новое поколение расширяющегося пенополистирола (EPS) от BASF. В русскоязычных брошюрах "Изоляция стен Neopor (BASF)" и "Neopor. Расширяющийся полистирол (EPS). Инновационная изоляция ИИ.", к сожалению, информация о паропрозрачности данного материала отсутствует полностью. Весь упор на черные гранулы графита, которые позволяют уменьшить толщину утеплителя процентов на 15, при этом сохраняя коэффициент теплопроводности.

Информация про Neopor на сайте BASF на русском языке вообще скудная. А вот на английском можно найти уже более интересные вещи. Например, следующее:


Water and Neopor are good friends.

Neopor Rigid Thermal Insulation is a closed- cell foam, but not all closed-cell foams are created equally. Neopor Rigid Thermal has a Class III Vapor Permeability rating of between 2.5 and 5.5 depending on thickness and density. This means walls constructed with Neopor as Continuous Insulation can more easily transport water vapor, reducing the likelihood of mold, mildew and structural damage. And, Neopor Rigid Thermal Insulation has low water absorption relative to traditional insulation materials.

Попробую перевести:


Вода и Neopor (Неопор) - хорошие друзья.

Твердая теплоизоляция Neopor - это пена с закрытыми ячейками, но не все закрытые ячейки сделаны одинаково. Neopor Rigid Thermal имеет 3 класс паропроницаемости в диапазоне от 2.5 до 5.5, в зависимости от толщины и плотности. Это означает, что стены, построенные с применением Neopor в качестве непрерывной изоляции могут легко переносить пар, уменьшая вероятность возникновения плесени, ложной мучнистой росы, а также структурного повреждения. Твердая теплоизоляция Neopor имеет меньшее абсорбирование воды, по сравнению с традиционным изоляционными материалами.

В российских источниках мне встретилась информация от том, что паропроницаемость Неопора составляет не менее 0,05 мг / (м.ч.Па). Но не уверен, что этим данным можно доверять. У бетона паропроницаемость меньше. А вот у кирпича уже больше, причем сильно различается от того, какой именно кирпич. Так что все правильно указано про снижении вероятности возникновения грибков и плесени. Если уж и использовать экструдированный пенополистирол, стиропор или пенопласт для утепления каменных стен, то именно подобный паропроницаемый (т.е. экструзионный пенополистирол сразу отпадает). Хотя у экологически чистых, негорючих и долговечных - пеностекольной крошки и вермикулита - даже с паропроницаемостью все намного лучше. В любом случае помимо экологичности обращайте внимание на то, чтобы долговечность утеплителя соответствовала долговечности стен дома, а паропроницаемость утеплителя была на уровне паропроницаемости стен или выше.

Безусловно проблему с утеплителями, которые не выводят пар можно решать при помощи принудительной вентиляции, а также при помощи внутренней отделки, блокирующей прохождение пара. Но стоит ли так делать, решать вам. Тем более, что при такой борьбе с причиной всегда остается шанс, что что-то пойдет не так, в том числе из-за ошибки отделочников или поломки оборудования.



В общем, будьте осторожны, когда читаете маркетинговые буклеты, даже если это премиальный сегмент. Красивые картинки и импортные материалы - это еще не гарантия качества и экологичности. Безусловно за 60 миллионов рублей в случае с Райт Парк коттедж получается с очень интересными решениями и качественными материалами. Но мне я бы за такие деньги все равно избегал решений, подобных данному от компании ООО "Актив Хаус".

Поставляем строительные материалы в города: Москва, Санкт-Петербург, Новосибирск, Нижний Новгород, Казань, Самара, Омск, Челябинск, Ростов-на-Дону, Уфа, Пермь, Волгоград, Красноярск, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Ярославль, Ульяновск, Барнаул, Иркутск, Хабаровск, Тюмень, Владивосток, Новокузнецк, Оренбург, Кемерово, Набережные Челны, Рязань, Томск, Пенза, Астрахань, Липецк, Тула, Киров, Чебоксары, Курск, Тверь, Магнитогорск, Брянск, Иваново, Улан-Удэ, Нижний Тагил, Ставрополь, Сургут, Каменск-Уральский, Серов, Первоуральск, Ревда, Комсомольск-на-Амуре, Абакан и др.

08-03-2013

30-10-2012

Объем производства вина в мире в 2012 году должен упасть на 6,1 процента из-за плохого урожая сразу в нескольких странах мира,

Что такое паропроницаемость

10-02-2013

Паропроницаемостью по своду правил по проектированию и строительству 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара G n (мг/м 2 час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна G n = цЛр п /5, где ц (мг/м час Па) - коэффициент паропроницаемости, Ар п (Па) - разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная ц, называется сопротивлением паропроницанию R n = 5/ц и относится не к материалу, а слою материала толщиной 5.

В отличие от воздухопроницаемости, термин «паропроницаемость» - это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара G n через слой материала.

Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно.

Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости ц более точный термин коэффициента диффузии (который численно равен 1,39ц) или коэффициента сопротивления диффузии 0,72/ц.

Рис. 20. Принцип измерения паропроницаемости строительных материалов. 1 - стеклянная чашка с дистиллированной водой, 2 - стеклянная чашка с осушающим составом (концентрированным раствором азотнокислого магния), 3 - изучаемый материал, 4 - герметик (пластилин или смель парафина с канифолью), 5- герметичный термостатированный шкаф, 6 - термометр, 7 - гигрометр.

Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф).

После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными р п = срро, где ро - давление насыщенного пара при заданной температуре, ср - относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.

Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(A,poCo) 0 " 5 , где А, ро и Со - табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.

Таблица 5 Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП П-3-79*)

Материал

Толщина слоя

Сопротивление паропроницанию,

м/час Па/мг



Картон обыкновенный

Листы асбестоцементные

Листы гипсовые обшивочные

(сухая штукатурка)



Листы древесноволокнистые



Листы древесноволокнистые



Пергамин кровельный

Рубероид

Толь кровельный

Полиэтиленовая пленка

Фанера клееная трехслойная

Окраска горячим битумом

за один раз



Окраска горячим битумом

за два раза



Окраска масляная за два раза

с предварительной шпатлевкой

и грунтовкой




Окраска эмалевой краской

Покрытие изольной мастикой за



Покрытие бутумно-кукерсольной

мастикой за один раз



Покрытие бутумно-кукерсольной

мастикой за два раза



Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм =100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м 3 воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:

Температура °С 0

Плотность

насыщенного пара do, кг/м 3 0,005



Давление

насыщенного

пара ро, атм 0,006



Давление

насыщенного пара ро, кПа 0,6



Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м 3 соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м 2 час, а в расчёте на 20 м 2 стен -(60-80) г/час.

Это не столь уж и много, если учесть, что в бане объёмом 10 м 3 содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-10) кг/м 2 час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м 2 час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.

Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м 2 час, а за счёт воздухопроницаемости при легком ветре 1 м/сек - (0,2-2) г/м 2 час и при порывах ветра 10 м/сек - (20- 200) г/м 2 час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания.

Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м 2 , то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны.

Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.

В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот.

Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется.

Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур.

С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:

Перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха - ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;

Перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).

В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров.

Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.


1. Минимизировать отбор внутреннего пространства может только утеплитель с наименьшим коэффициентом теплопроводности

2. К сожалению аккумулирующую теплоемкость массива наружной стены мы теряем навсегда. Но здесь есть свой выигрыш:

А) нет необходимости тратить энергоресурсы на нагрев этих стен

Б) при включении даже самого маленького обогревателя в помещении почти сразу станет тепло.

3. В местах соединения стены и перекрытия „мостики холода” можно убрать, если утеплитель наносить частично и на плиты перекрытия с последующим декорированием этих примыканий.

4. Если Вы все еще верите в "дыхание стен", то ознакомьтесь, пожалуйста с ЭТОЙ статьей. Если нет, то тут очевидный вывод: теплоизоляционный материал должен очень плотно быть прижат к стене. Еще лучше, если утеплитель станет единым целым со стеной. Т.е. между утеплителем и стеной не будет никаких зазоров и щелей. Таким образом влага из помещения не сможет попасть в зону точки росы. Стена всегда будет оставаться сухой. Сезонные колебания температур без доступа влаги не будут оказывать негативного влияния на стены, что увеличит их долговечность.

Все эти задачи может решить только напыляемый пенополиуретан.

Обладая самым низким коэффициентом теплопроводности из всех существующих теплоизоляционных материалов, пенополиуретан займет минимум внутреннего пространства.

Способность пенополиуретана надежно прилипать к любым поверхностям позволяет легко нанести его на потолок для уменьшения "мостиков холода".

При нанесении на стены пенополиуретан, находясь некоторое время в жидком состоянии, заполняет все щели и микрополости. Вспениваясь и полимеризуясь непосредственно в точке нанесения пенополиуретан становится единым целым со стеной, перекрывая доступ разрушительной влаге.

ПАРОПРОНИЦАЕМОСТЬ СТЕН
Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).

Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю.

Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями.

Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному.

Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные