Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

село Полтавское Аннотация: в статье представлен вывод формул индукции поля соленоида, созданного переменным током. Эту формулу можно использовать для углубленного изучения учащимися темы «Магнитное поле» и при решении задач. Ключевые слова: индукция, соленоид, магнитный поток, частота, индуктивность, индуцированное напряжение, мощность переменного тока. При переменном токе соленоид создаёт переменное магнитное поле. При этом, как известно, индуктивность соленоида определяется формулой [ 1, с.101 ] : L = , где (1) где U – индуцированное в соленоиде напряжение, n – частота переменного тока, I – сила переменного тока. С другой стороны индуктивность соленоида определяется формулой [ 2, с.253 ] : L = , (2) где Ф – магнитный поток соленоида. Приравнивая выражения (1) и (2), получим: Ф = . (3) При этом полный магнитный поток соленоида определяется и другой формулой [ 2, с.242 ] : Ф =В × S × N , (4) где В – индукция магнитного поля, N – число витков соленоида, S – площадь поперечного сечения магнитного поля. Приравняв выражения (3) и (4), получим В = . (5) Таким образом, индукция поля соленоида, созданного переменным током, прямо пропорциональна индуцированному в соленоиде напряжению. Как известно, магнитную индукцию поля, созданного постоянным током, текущим по виткам бесконечно длинного соленоида, внутри этого соленоида на его оси определяют по формуле [ 2, с.232 ] : В = (в вакууме), (6) где n = NI – число ампер-витков соленоида, l длина соленоида, µ о магнитная постоянная. Единица магнитной индукции (тесла) может быть установлена по формуле (6): [ В ] = × = , (7) С другой стороны единица магнитной индукции (тесла) может быть установлена по формуле (5): [ В ] = , (8) Перемножив выражения (7) и (8), получим: [ В ] 2 = × = = , (9) Тогда заменив единицы измерения в выражении (9) физическими величинами, получим формулу для индукции поля соленоида, созданного переменным током: В 2 = , отсюда В = , (10) где V - объём соленоида, Р – мощность переменного тока. Таким образом, индукция магнитного поля соленоида увеличивается при увеличении мощности переменного тока и уменьшается при увеличении объёма соленоида. Задача 1. Магнитная индукция поля внутри соленоида, состоящего из 2000 витков диаметра 2,8см, подключённого к источнику переменного тока с частотой 50Гц, равна 0,72мТл. Каково индуцированное в соленоиде напряжение?
Дано: СИ: Решение:
N = 2000 витков d = 2,8 см В = 0,72 мТл n = 50 Гц = 2,8 × 10 -2 м =0,72 × 10 -3 Тл Индукция поля соленоида определяется формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), найдём . (3)
U – ?
Подставляя исходные данные в выражение (3), получим: = 0,278 В.
Ответ: U = 0,278 В.
Задача 2. Индуцированное в соленоиде напряжение 0,2В. Магнитная индукция поля внутри соленоида, созданного переменным током с частотой 50 Гц, равна 0,52 мТл и диаметр магнитного поля равен 2,8см. Сколько витков содержит соленоид?
Дано: СИ: Решение:
U = 0,2 В d = 2,8 см В = 0,52 мТл n = 50 Гц = 2,8 × 10 -2 м =0,52 × 10 -3 Тл Индукция поля соленоида выражается формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), получим . (3)
N – ?
Подставляя исходные данные в выражение (3), получим: витков
Ответ: N = 2000 витков.
Задача 3. Магнитная индукция поля внутри соленоида с числом витков 400 и объёмом 6,15 × 10 -5 м 3 равна 0,72 мТл. Частота переменного тока 50Гц. Какова мощность переменного тока?
Дано: СИ: Решение:
B = 0,72 мТл n = 50 Гц µ о =1,256 × 10 -6 V = 6,15 × 10 -5 м 3 N = 400 витков =0,72 × 10 -3 Тл Индукция поля соленоида определяется по формуле (10): В = , отсюда Р = . Подставляя исходные данные, получим:
P – ?
» 3,2 мкВт. Ответ: Р » 3,2 мкВт.
Литература
1. Мякишев Г.Я., Буховцев Б.Б. Физика. Учебник для общеобразовательных учреждений. М.: Просвещение, 2007. 336 с. 2. Мустафаев Р.А., Кривцов В.Г. Физика. М.: Высшая школа, 1989. 496 с.

Соленоид – катушка, длина которой значительно превышает толщину (проводник, навитый на цилиндр). Опыт и расчет показывает, что чем длиннее соленоид, тем меньше индукция МП снаружи него. Для бесконечно длинного соленоида МП снаружи отсутствует вообще.

1 этап . Из соображений симметрии ясно, что линии вектора направлены вдоль его оси, причем составляет с направлением тока в соленоиде правовинтовую систему.

2 этап. Выбираем контур L в виде прямоугольника 1-2-3-4-1, как показано на рис. 6 (одна из сторон которого параллельна оси соленоида и располагается внутри него).

Рис. 6

Рассчитаем циркуляцию по данному контуру:

где - длина стороны 1-2 контура. На сторонах 2-3, 3-4 и 4-1 интеграл обращается в ноль, т.к. внутри соленоида , а за его пределами .

3 этап. Рассчитаем суму токов, охватываемых контуром , где – число витков на стороне контура 1-2. Выбираем знак «+», т.к. направление тока и обхода контура связано правилом правого винта.

4 этап. Использую т о циркуляции, находим модуль вектора : , откуда

, (1.20)

где – число витков на единицу длины соленоида.

Магнитное поле тороида Тороид – кольцевая катушка с витками, намотанными на сердечник, имеющий форму тора.

здесь N - число витков в тороидальной катушке, – радиус осевой линии тороида (т.е. окружности, проходящей через центры витков).

Вне тороида МП отсутствует.

§ 5. Сила Ампера

Каждый носитель тока испытывает действие магнитной силы. Действие этой силы передается проводнику, по которому заряды движутся. В результате магнитное поле (МП) действует с определенной силой на сам проводник с током. Силы, действующие на токи в МП, называют силами Ампера.

Закон Ампера определяет силу , с которой магнитное поле действует на элемент проводника с током :

Интегрируя это выражение по элементам тока, можно найти силу Ампера, действующую на тот или иной участок проводника.

Направление силы удобно определять по правилу левой руки (рис.).

Рис. Правило левой руки.

Сила взаимодействия параллельных токов. 2 параллельных бесконечно длинных проводника с токами и находятся на расстоянии . На единицу длины проводника с током действует сила .

Нетрудно убедиться, что токи, одинаково направленные, притягиваются, а противоположно направленные –отталкиваются. Здесь речь идет только о магнитной силе! Нельзя забывать, что кроме магнитной имеется еще и электрическая сила, обусловленная избыточными зарядами на поверхности проводников. Поэтому если говорить о полной силе взаимодействия проводников, то она может быть как отталкивающей, так и притягивающей в зависимости от соотношения магнитной и электрической составляющих.



§ 6. Момент сил, действующих на контур с током

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

Являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми поля-ми . То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля , создаваемого зарядами.

Соленоид.

Соленоид — это проволочная спираль с током.

Соленоид характеризуется числом витков на единицу длины n , длиной l и диаметром d . Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром d и длиной l . Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно ци-линдрической формы (тороидальный соленоид). Различают длинный соленоид (l d ) и короткий соленоид (l ≪ d ). В тех случаях, когда соотношение между d и l специально не оговаривается, подразуме-вается длинный соленоид.

Соленоид был изобретен в 1820 г. А. Ампером для усиления открытого X. Эрстедом магнитного действия тока и применен Д. Араго в опытах по намагничиванию стальных стержней. Магнит-ные свойства соленоида были экспериментально изучены Ампером в 1822 г. (тогда же им был вве-ден термин «соленоид»). Была установлена эквивалентность соленоида постоянным природным магнитам, что явилось подтверждением электродинамической теории Ампера, которая объясняла магнетизм взаимодействием скрытых в телах кольцевых молекулярных токов.

Силовые линии магнитного поля соленоида:

Направление этих ли-ний определяют с помощью второго правила правой руки .

Если обхватить соленоид ладонью правой руки, направив четыре пальца по току в витках, то отставленный большой палец укажет направление магнитных линий внутри соленоида.

Сравнив магнитное поле соленоида с полем постоянного магнита (рис. ниже), можно заметить, что они очень похожи.

Как и у магнита, у соленоида есть два полюса — северный (N ) и южный (S ). Северным полюсом называют тот, из которого магнитные линии выходят; южным полюсом — тот, в который они входят. Северный полюс у соленоида всегда располагается с той стороны, на которую указывает большой палец ладони при ее расположении в соответствии со вторым правилом правой руки.

Соленоид в виде катушки с большим числом витков используют в качестве магнита.

Исследования магнитного поля соленоида показывают, что магнитное действие соленоида увеличивается с увеличением силы тока и числа витков в соленоиде. Кроме того, магнитное действие соленоида или катушки с током усиливается при введении в него железного стержня, который называют сердечником .

Электромагниты.

Современные электромагниты могут поднимать грузы массой несколько десятков тонн. Они используются на заводах при перемещении тяжелых изделий из чугуна и стали. Электромагниты используются также в сельском хозяйстве для очистки зерен ряда растений от сорняков и в дру-гих отраслях промышленности.

Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рис. 50.1. Внутри соленоида направление этих линий образует с направлением тока в витках правовинтовую систему.

У реального соленоида имеется составляющая тока вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока к элементу длины соленоида ) изменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно

где - число витков соленоида, приходящееся на единицу его длины, I - сила тока в соленоиде.

В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле бесконечного плоского конденсатора однородно и ограничено объемом конденсатора).

В соответствии со сказанным представим соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током постоянной линейной плотности

Разобьем цилиндр на одинаковые круговые токи - «витки».

Из рис. 50.2 видно, что каждая пара витков, расположенных симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.

Из рис. 50.1 вытекает, что направления поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида направления полей не изменяются и в пределе при остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра током правовинтовую систему.

Из параллельности вектора В оси вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным. Чтобы доказать это, возьмем внутри соленоида воображаемый прямоугольный контур 1-2-3-4 (рис. 50.3; участок идет по оси соленоида). Обойдя контур по часовой стрелке, получим для циркуляции вектора В значение Контур не охватывает токов, поэтому циркуляция должна быть равна нулю (см. (49.7)).

Отсюда следует, что Располагая участок контура 2-3 на любом расстоянии от оси, мы каждый раз будем получать, что магнитная индукция на этом расстоянии равна индукции на оси соленоида. Таким образом, однородность поля внутри соленоида доказана.

Теперь обратимся к контуру 1-2-3-4. Мы изобразили векторы штриховой линией, поскольку, как выяснится в дальнейшем, поле вне бесконечного соленоида равно нулю. Пока же мы знаем лишь, что возможное направление поля вне соленоида противоположно направлению поля внутри соленоида. Контур не охватывает токов; поэтому циркуляция вектора В по этому контуру, равная а, должна быть равна нулю.

Отсюда вытекает, что . Расстояния от оси соленоида до участков 1-4 и 2-3 были взяты произвольно. Следовательно, значение В на любом расстоянии от оси будет вне соленоида одно и то же. Таким образом, оказывается доказанной и однородность поля вне соленоида.

Циркуляция по контуру, изображенному на рис. 50.4, равна (для обхода по часовой стрелке). Этот контур охватывает положительный ток величины . В соответствии с (49.7) должно выполняться равенство

или после сокращения на а и замены на (см. )

Из этого равенства следует, что поле как внутри, так и снаружи бесконечного соленоида является конечным.

Возьмем плоскость, перпендикулярную к оси соленоида (рис. 50.5). Вследствие замкнутости линий В магнитные потоки, через внутреннюю часть 5 этой плоскости и через внешнюю часть S должны быть одинаковыми.

Поскольку поля однородны и перпендикулярны к плоскости, каждый из потоков равен произведению соответствующего значения магнитной индукции и площади, пронизываемой потоком. Таким образом, получается соотношение

Левая часть этого равенства конечна, множитель S в правой части бесконечно большой. Отсюда следует, что

Итак, мы доказали, что вне бесконечно длинного соленоида магнитная индукция равна нулю. Внутри соленоида поле однородно.

Положив в (50.3) , придем к формуле для магнитной индукции внутри соленоида:

Произведение называется числом ампер-витков на метр. При витков на метр и силе тока в 1 А магнитная индукция внутри соленоида составляет .

В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад (см. формулу (47.4)). Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения (50.4): - число витков на единицу его длины). В этом случае

Контур, проходящий вне тороида, токов не охватывает, поэтому для него Таким образом, вне тороида магнитная индукция равна нулю.

Для тороида, радиус которого R значительно превосходит радиус витка, отношение для всех точек внутри тороида мало отличается от единицы и вместо (50.6) получается формула, совпадающая с формулой (50.4) для бесконечно длинного соленоида. В этом случае поле можно считать однородным в каждом из сечений тороида. В разных сечениях поле имеет различное направление, поэтому говорить об однородности поля в пределах его тороида можно только условно, имея в виду одинаковость модуля В.

У реального тороида имеется составляющая тока вдоль оси. Эта составляющая создает в дополнение к полю (50.6) поле, аналогичное полю кругового тока.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные