Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Начинающим радиолюбителя можно посоветовать собрать достаточно простой измерительный прибор называемый авометром. Его активно используют при ремонте настройки различных аналоговых электронных устройств. Авометр сочетает в себе амперметр, вольтметр, а иногда еще и испытатель транзисторов и диодов. Конечно, любой китайский мультиметр не чем не уступает по функциональности, но не в надежности, а тем более в ремонтопригодности.


Схема простого авометра

Омметр: микроамперметр ИП1, источник питания напряжением 1,5 В и добавочные рези-сторы R1 «Уст. 0» и R2. Перед началом измерения щупы устройства соединяют, и с помощью подстроечного резистора R1 стрелку микроамперметра выводят на конечную отметку шкалы, являющуюся нулем омметра. Затем щупами касаются выводов участка цепи и по шкале омметра определяют полученное значение сопротивления.


Четырехпредельный вольтметр состоит из той же головки микроамперметра ИП1 и добавочных резисторов R3-R6. С резистором R3 отклонение стрелки микроамперметра на всю шкалу соответствует напряжению 1 В, с резистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Пределы измерений задает универсальный шунт из резисторов R7-R11, к которому через кнопку подключен микроамперметр.


Конструкция авометра показана на рисунке выше. Головка микроамперметра типа М49 с сопротивлением рамки 300 Ом. С функцией гнезд Гн1-Гн11 отлично справляется часть десятиконтактного разъема. Резисторы R9-R11 типа МОИ, остальные МЛТ.

Калибровка вольтметра и миллиамперметра заключается в подборе добавочных резисторов и универсального шунта под максимальные значения напряжения и тока соответствующих пределов измерения, а омметра - к разметке шкалы по эталонным резисторам.

Калибровку вольтметра и микроамперметра можно осуществить по схеме ниже:


Параллельно источнику питания напряжением 13,5 В подсоедините переменный резистор Rp сопротивлением 2-3 кОм, который используется для регулировки, а между его движком и нижним контактом,- параллельно соединенные образцовые вольтметры. Предварительно движок регулировочного сопротивления установите в крайнее нижнее положение, а калибруемый вольтметр подсоедините на первый предел измерений до 1 В. Постепенно увеличивайте подаваемое напряжение, установите на вольтметре по образцовому вольтметру напряжение. Если при этом стрелка настраиваемого вольтметра не доходит до последней отметки шкалы, это говорит о том, что сопротивление добавочного резистора R3 оказалось выше, чем должно быть, а если уходит за пределы шкалы, то ниже. Точно так же повторите, но при напряжениях 3 и 10 В, регулируя резисторы R4 и R5.

Для калибровки миллиамперметра нужен: эталонный миллиамперметр на ток до 100 мА и два переменных резистора - пленочный (СП, СПО) сопротивлением 5 10 кОм и проволочный на 50-100 Ом. Первый регулировочный резистор предназначен для подгонки резисторов R7-R9, второй R10 и R11 универсального шунта.

Шкала самодельного авометра может выглядеть как на рисунке ниже. Верхняя из них предназначена для измерения сопротивлений, нижняя шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить по форме шкалы микроамперметра. Затем осторожно извлекаем магнитную головку из корпуса и наклеиваем новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. В описанном самодельном авометре использован микроамперметр на ток 300 мкА с сопротивлением рамки 300 Ом. При таких параметрах микроамперметра относительное входное сопротивление вольтметра будет около 3,5 кОм/В. Увеличить его и тем самым уменьшить влияние вольтметра на режим измерения можно только применением более чувствительной головки микроамперметра. Но при замене микроамперметра с более чувствительной головкой надо учитывать его параметры I и К, а также пересчитать сопротивление всех сопротивлений авометра. Таким методом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве эталонного рекомендуется использовать цифровой прибор заводского исполнения.

У радиолюбителей, особенно начинающих, большой популярностью пользуются омметры с линейной шка­лой, не требующие замены и градуировки шкалы стре­лочного индикатора. Сравнительно простая конструкция такого омметра была разработана на операционном усилителе. Омметр позволяет измерять сопротивления от 1 Ом до 1 МОм, что вполне достаточно для многих практических целей.

Принцип действия омметра на операционном усили­теле поясняет рис. 1. Измеряемый резистор R х вклю­чен в цепь обратной связи между выходом усилителя и его инвертирующим входом. В этой же цепи стоит и эталонный резистор R 3 . На неинвертируюший вход по­дается опорное напряжение от источника G 1. В таком режиме выходное напряжение операционного усилителя будет зависеть от соотношения сопротивлений R x и R 3 цепи обратной связи. Его и измеряет относительно опорного напряжения вольтметр PV , показания которо­го прямо пропорциональны сопротивлению R x .

Рис. 1. Функциональ­ная схема омметра с линейной шкалой

Принципиальная схема омметра приведена на рис. 2. Опорное напряжение + 2 В на неинвертирующем входе усилителя создается де­лителем из резистора R 10 и стаби­лизатора тока на транзисторе VI . Точное значение опорного напряже­ния подбирают переменным рези­стором R 12. Поскольку при измере­нии малых сопротивлений ток в измерительной цепи, а значит, и вы­ходной ток усилителя может пре­вышать допустимый для ОУ, в омметр введен эмиттерный повто­ритель на транзисторе V 3. Чтобы защитить стрелочный индикатор от перегрузок при слу­чайном увеличении выходного напряжения усилителя из­за неправильного положения переключателя S1, парал­лельно выводам индикатора подключен диод V 2,

Вольтметр состоит из миллиамперметра РА1 и ре­зисторов R 13, R 14. В показанном на схеме положении кнопки S 2 вольтметр рассчитан на измерение напряже­ний до 2 В. При замыкании контактов кнопки резистор R 14 шунтируется и вольтметр измеряет напряжение до 0,2 В.

Эталонные резисторы подключаются к инвертирую­щему входу ОУ переключателем S 1. Сопротивление эта­лонного резистора определяет поддиапазон измерений омметра. Так, при включении резистора R 1 прибором можно измерять сопротивления примерно от 100 кОм до 1 МОм. При следующем положении переключателя предельное измеряемое сопротивление может достигать 300 кОм, а при дальнейших положениях эти значения будут соответствовать 100 кОм, 30 кОм, 10 кОм, 3 кОм, 1 кОм, 300 Ом, 100 Ом. В итоге получается девять поддиапазонов измерения.

Благодаря кнопке S 2 пределы измеряемых сопро­тивлений можно уменьшить в 10 раз. Пользуются ею только на двух последних поддиапазонах. Таким обра­зом, к имеющимся поддиапазонам добавляются еще два: до 30 Ом и до 10 Ом.

Рис. 2. Принципиальная схема омметра с линейной шкалой

Чтобы более экономно расходовать энергию источника питания, его подключают к прибору кнопкой S3 только во время измерения.

Рис. 3. Размещение деталей на лицевой панели корпуса

Детали омметра размещены в небольшом корпусе. На съемной лицевой панели из гетинакса размерами 190 X 130 мм (рис. 3) укреплены индикатор, переклю­чатель поддиапазонов S 1 и кнопочные выключатели S 2, S3, резистор калибровки R 12 и зажимы для подключения источника питания и проверяемого резисто­ра (или другой детали, обладающей оммическим сопро­тивлением) .

Эталонные резисторы подпаяны непосредственно к лепесткам переключателя, а операционный усилитель и транзисторы смонтированы на плате из стеклотексто­лита (можно гетинакса) размерами 35 X 30 мм, кото­рую можно прикрепить, например, к лицевой панели с внутренней стороны.

Резисторы R 1 - R 9 могут быть МЛТ-0,125, МЛТ-0,25 или другие, подобранные с точностью ±1%, - от этого во многом зависит точность измерений. Перемен­ный резистор R 12 - СПЗ-4а или другой. Диод V 2 мо­жет быть, кроме указанного на схеме, Д226 с любым буквенным индексом или другой с прямым напряже­нием 0,3…0,6 В. Транзисторы любые из серий К.Т312, КТ315. Стрелочный индикатор может быть с током полного отклонения стрелки 1 мА и внутренним сопротив­лением 82 Ом. Тогда резистор RI 3 должен иметь со­противление 118 Ом, a R 14 - 1,8 кОм. Подойдет и ми­кроамперметр М24 с током полного отклонения стрел­ки 100 мкА и внутренним сопротивлением 783 Ом. (та­кой индикатор показан на рис. 3), он удобен тем, что имеет шкалу на 100 делений, облегчающую отсчет из­меряемых сопротивлений. Но в этом случае необходи­мо зашунтировать индикатор резистором сопротивле­нием около 92 Ом, чтобы стрелка индикатора отклоня­лась на конечное деление при токе 1 мА. Сопротивле­ния резисторов R 13, R 14 для такого варианта остаются неизменными. В случае же использования индикатора с другим внутренним сопротивлением придется пересчи­тать сопротивление резисторов так, чтобы с резистором R 14 стрелка индикатора отклонялась на конечное деле­ние шкалы при напряжении 0,2 В, а с последовательно соединенными резисторами R 13, R 14 - np и напряжении 2 В.

Налаживание прибора начинают с проверки правильности монтажа. Затем подключают к зажимам питания источник напряжением 9 В, например две по­следовательно соединенные батареи 3336Л. К зажимам «Rх» подключают выводы точно измеренного резисто­ра, например, сопротивлением 100 кОм. Движок пере­менного резистора R 12 устанавливают в среднее поло­жение, а ручку переключателя S 1 - в положение «.300 к». Только после этого нажимают кнопку S3. Стрелка индикатора должна отклониться примерно на треть шкалы. Добиваются этого переменным резисто­ром R 12 «Калибр». Затем переключателем устанавли­вают поддиапазон «100 к» и переменным резистором добиваются точного отклонения стрелки индикатора на конечное деление шкалы. Проверяют калибровку на других поддиапазонах, подключая к зажимам « Rx » ре­зисторы сопротивлением 30 кОм, 10 кОм, 3 кОм и так далее. При значительных расхождениях в показаниях индикатора и сопротивлении измеряемого резистора следует подобрать точнее соответствующий эталонный резистор.

Чтобы избегать зашкаливания стрелки индикатора при работе с омметром, нужно всегда начинать измерения в положении переключателя «1 М», а затем, по мере отклонения стрелки индикатора, постепенно переходить на другие поддиапазоны.

Диапазон измеряемых на практике сопротивлений условно делят на три части: малые сопротивления (менее 10 Ом), средние сопротивления (от 10 Ом до 1 МОм) и большие сопротивления (более 1 МОм). Эти границы достаточно приблизительны и могут различаться. Наиболее распространенные аналоговые и цифровые тестеры и мультиметры предназначены, в основном, для измерения средних сопротивлений. Однако необходимость измерения малых сопротивлений (менее 1 Ом) возникает достаточно часто, например, при проверке обмоток трансформаторов, контактов реле, шунтов и др.

«Измерение сопротивлений основано на преобразовании их величины в ток или напряжение, поэтому при малом сопротивлении получается небольшое падение напряжения либо ток мало отличается от режима короткого замыкания. Если увеличить измерительный ток, на измеряемом сопротивлении может рассеиваться недопустимо большая мощность, в результате чего может «сгореть» резистор. Кроме того, за счет нагрева резистора меняется его сопротивление, что приводит к дополнительной погрешности измерения (температурная погрешность)». Это выдержка одной из статей, которую я нашел в сети. Попробуем разобраться, так ли это страшно на самом деле.
Ну с температурной погрешностью и со сгоранием в нашем случае мы повременим, так как в основном резисторы, сопротивление которых будем измерять, изготавливаются из проволоки. Теперь немного посчитаем. В приборе, схему которого я хочу предложить используется два режима измерения сопротивления. При стабильном токе в 1А (шкала 1 деление = 0,002 Ом) и при стабильном токе 0,1А (шкала 1 деление = 0,02 Ом). Это для головки показанной на фото 1. Как видно из фото, измерительная головка имеет ток полного отклонения 100мкА. Цена маленького деления — 2мкА.

И так, при токе в 0,1А прибор будет измерять сопротивление с 0,02 Ома до 1-го Ома. Т.е. отклонение стрелки на последнее деление шкалы будет соответствовать одному Ому. Допустим меряем 1 Ом. Р=I2 R. Мощность выделяемая на измеряемом резисторе будет равна 0,01Вт. Теперь посчитаем мощность, которая может выделиться на измеряемом резисторе сопротивлением 0,1 Ом при токе 1А. Р = 1 1 0,1 = 0,1Вт = 100мВт. Так что конец Света отменяется. Ток в 1А и 0,1А я выбрал для простоты расчетов, нам же потребуется ток немного другой величины – это связано с конкретным сопротивлением рамки измерительной головки.

Стабилизация тока в схеме осуществляется транзистором VT1 TIP107 и микросхемой DA2 К153УД2. Выбор этой микросхемы связан с ее возможностью работать при входных напряжениях близких к напряжению питания. Транзистор TIP107 можно заменить на КТ973 с любой буквой. Принцип работы приборчика, как вы уже догадались, заключается в измерении падения напряжения на измеряемом сопротивлении при прохождении через его определенного стабильного тока. Какой ток нам нужен на самом деле? Сопротивление рамки у моего измерительного прибора равно 1200Ом, ток полного отклонения – 0,0001А, значит, если мы будем использовать эту головку в качестве вольтметра, нам потребуется подать на ее напряжение величиной = U = I R = 0,0001 1200 = 0,12В = 120мВ для отклонения стрелки на последнее деление шкалы. Это означает, что именно такое напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02Ома до 1Ома. Значит на данном пределе измерения нам надо пропустить через измеряемый резистор стабильный ток величиной I = U/R = 0,12/1 = 0,12A = 120мА. Тоже самое можно рассчитать и для другого предела, там потребуется ток величиной 1,2А.

Идем дальше. Схема собрана. Перед первым включением тумблер SB1 надо разомкнуть, а резистор R2 выставить в среднее положение (резистор подстроечный многооборотный). Выходные клеммы прибора замкнуты контактами кнопки SB2. Головка пока не подключена. Параллельно резистору R4 = 1Ом подключаем мультиметр, включаем питание и резистором R2, выставляем на нем напряжение примерно 1,2В, что будет соответствовать току, проходящему через него, величиной в 1,2А. Подключаем к клеммам резистор величиной 1Ом, нажимаем на кнопку SB2 – падение напряжения на резисторе R4 не должно измениться, это будет говорить о том, что стабилизатор тока работает. Теперь подключаем эталонный резистор величиной 0,1 Ома. Я брал резистор С5-16МВ1 с процентным отклонением в 1%. Этого для радиолюбителя вполне достаточно. Я думаю, что многие из вас, так же как и я, вряд ли обращают внимания на процентное отклонение сопротивления используемых резистор, да если оно еще и закодировано латинскими буквами. Далее подключаем головку, опять жмем на кнопку «Измерение» и резистором R2 уже окончательно точно выставляем стрелку прибора на последнее деление шкалы. Это мы настроили предел измерения от 0,002 Ома до 0,1 Ома. После этого замыкаем тумблер SB1 и резистором R3 выставляем напряжение на резисторе R4 равное примерно 0,12В, что соответствует току стабилизации 0,12А. К клеммам подключаем якобы эталонный резистор 1 Ом, нажимаем на кнопку «Измерение» и опять же резистором R3 устанавливаем стрелку на последнее деление. Получили предел измерения от 0,02 Ома до 1 Ома. На этом регулировка закончена.

При сборке прибора транзистор VT1 и микросхему DA1 обязательно установите на радиаторы. На таком радиаторе, что показан на фото2, микросхема нагревается до температуры +42С при работе с током 1А. Контакты кнопки «Измерение» должны выдерживать с лихвой ток 1А. От качества этой кнопки напрямую зависит суровая жизнь измерительной головки. Если каким либо образом нарушится контакт, а к клеммам в это время не будет подключен измеряемый резистор, то все напряжение 5В попадет на головку. Операционный усилитель, резисторы и конденсатор установлены на небольшой печатной плате, остальные детали соединены проводниками. В качестве сетевого трансформатора можно применить ТВК -110Л1 от старых телевизоров. Правда придется в нем заменить провод вторичной обмотки на ток 1,2А. Как рассчитать диаметр провода можно посмотреть . Есть еще одна возможность улучшить прибор – сделать его приставкой к цифровому мультиметру — использовать мультиметр вместо измерительной головки, тогда на пределе измерения напряжения оного — 200мВ, можно будет измерять сопротивление резисторов… сейчас посчитаем. Работаем со стабильным током 0,1А, который протекает по измеряемому резистору. Мультиметр показывает 1мВ = 0,001В, значит сопротивление резистора будет равно R = U/I = 0,001В/0,1А = 0,01 Ом. Для тока 1А и при показаниях мультиметра опять таки же 1мВ, сопротивление измеряемого резистора будет = 0,001/1 = 0,001Ом. У меня мультиметр измеряет напряжение до 0,1мВ, значит я могу измерять сопротивления до 0,0001 Ома. К недостаткам этого прибора можно отнести неудобство пользования. Им нельзя например замерить активное сопротивление обмотки двигателя или трансформатора на предмет межвиткового замыкания, потому как нет щупов. Ну все равно во многих случаях он может быть полезен. Успехов всем. До свидания. К.В.Ю. Скачать рисунок печатной платы.


Всем привет! Сегодня в обзоре Зажимы Кельвина с Ebay. В любительской радиотехнике, часто необходимо измерять маленькие сопротивления, потому мечтал купить для этой цели Миллиомметр. Периодически задаю на Али и Ebay в поиск фразу «milliohm metеr», читаю найденные варианты и со вздохом ухожу от компьютера, т.к. цены на эти приборы не радуют, тем более во время кризиса, где и так с деньгами не «густо». Собственно требования к измерению маленьких сопротивлений у меня не высокие, мне не нужно измерять микроомы, или что-то подобное с точностью до 6 знака после запятой. Но иногда бывает необходимость измерить сопротивление контактов выключателя, подобрать шунт к амперметру, да и часто просто необходимо подобрать наиболее подходящий резистор из кучки подобных… Потому появилась идея сделать самостоятельно бюджетный измерительный прибор, способный измерять, достаточно точно, сопротивления в диапазоне от 0.001 Ома и до 2 Ом. Всем, кому интересно, прошу под Кат… Внимание: Много фото (трафик)!!!

Для любителей придраться к словам, метрологам и тем у кого просто плохое настроение

Сразу в начале обзора, хочу расставить некоторые точки над «i». В обзоре не будет описано ни одного точного измерительного прибора, имеющего сертификат поверки Средства Измерения. Некоторым мой обзор может показаться бессмысленным, или «обзором для обзора». Что-ж всем не угодить… Но может кому-нибудь мой обзор будет полезным. Своими обзорами я преследую всего 2 цели: 1. Популяризовать любительскую радиотехнику. Вдруг у кого-то тоже «зачешутся руки», и захочется чего-нибудь собрать. 2. Мне просто нравится делиться тем, что я сделал, потому обзоры я пишу и для своего удовольствия, в том числе. Если Вам не нравятся мои обзоры, поставьте меня в черный список, и читайте более интересные обзоры нижнего белья. Тем более, сейчас весна и девушки, как я надеюсь, еще не раз нас порадуют красивыми фотографиями!)))

Все запчасти куплены за свои деньги, пунктом 18 тут даже не пахнет… Всем же «самоделкиным» и любителям читать обзоры в теме «Сделано руками», Добро пожаловать (Ласкаво просимо, қош келдіңіз)… Задавайте вопросы в комментариях, конструктивная критика приветствуется, орфографические ошибки указывайте в личку, постараюсь их исправить…

Изначально планировалось, что питанием самодельного миллиомметра будет литиевый аккумулятор 18650, ну и соответственно кучка китайских плат, что не раз уже обозревались на нашем сайте: модуль зарядки, модуль защиты от переразряда и плата бустер (в народе «повышайка»), т.к милливольметр работает при напряжении от 8 и до 12В. Потому решил протестировать хватит ли напряжения литиевого аккумулятора, что бы стабилизатор тока на Lm317 гарантировано выдавал ток на уровне 100мА. Наскоро прикрутил на ножки LM317 резистор с сопротивление около 12Ом я собрал тестовую схему. Схема подключения очень простая, я приведу картинку, иллюстрирующую подключение радиодеталей, только вместо измеряемого резистора у нас будет подключен амперметр:

Как видно на серии фотографий (gif), стабилизация тока начинается примерно от 4В и ток стабильный в широком диапазоне напряжений. Таким образом мы видим, что стабилизатор тока работает.

В ходе первичных испытаний, на предмет возможности использования литиевого аккумулятора, меня постигло тяжкое разочарование… Стабилизатор тока устойчиво давал стабильный ток, начиная от 4-4.5В… Таким образом, при разряде аккумулятора до 3В, ток становился 80мА, а значит ни о какой точности измерений, при использовании питания от литиевого аккумулятора, говорить не приходится. Придется переходить к плану Б… Если не получается задумку реализовать на батарейном питании, будем делать на питании от сети.

На Banggood была заказан , с двумя независимыми каналами на 12 и 5 Вольт. Меня в этом блоке подкупили 2 вещи: независимые каналы 5 и 12 вольт, что при выбранной схемотехнике, очень важно, т.к. стабилизатор тока и милливольтметр должны быть запитаны от гальванически не связанных блоков питания. И наличие, хоть какого-то фильтра на входе ИИП, что для не дорогих китайских источников питания редкость. Благодаря скидке, о которой узнал на нашем сайте «Муське», волшебном слове «elec», мне эта плата обошлась в 4.81 USD, вместо изначальной цены 5.66 USD (надеюсь эта скидка не тянет на п.18)))) Плата уже едет в Казахстан, осталось только дождаться её… Заодно и протестируем этот импульсный источник питания.

Пока посылка едет из Китая, нарисуем структурную схему нашего самодельного Миллиомметра. Схема очень простая и её повторить может даже начинающий радиолюбитель или просто любой человек, у которого руки растут из нужного места, даже если он ничего не понимает в радиотехнике)))) Схему можно собрать, просто глядя на картинку и в качестве милливольтметра использовать любой мультиметр на диапазоне 200мВ.

Единственное, что нужно будет сделать, это найти плюсовой (+) вывод источника питания 5 Вольт самостоятельно и подключить его к 3 ножке микросхемы LM317. Я на схеме указал подключение к источнику питания чисто схематически, без указания полярности, т.к. заранее не известно где будет плюсовой вывод китайского ИИП. Если делать миллиомметр- приставку для мультиметра, то можно использовать любой блок питания на 5В от сотового телефона и т.п. Питание для милливольтметра тогда не нужно, т.к. у мультиметра свое собственное батарейное питание.

Собираем испытательный стенд, где мы проверим работоспособность нашего миллиомметра. Поскольку источник питания еще не приехал, вместо него используем 2 лабораторных блока питания. 5 вольт для питания LM317 и 12В для питания милливольтметра:


Собираем стабилизатор тока, я просто распаял 2 резистора (постоянный и подстроечный, включенный параллельно) на ножках Lm-ки. Получился вот такой «колхоз»:


Подключаем к резисторам мультиметр в режиме измерения сопротивлений и подстроечным резистором приблизительно выставляем сопротивление 12.5 Ом. Более точно подгоним сопротивление по амперметру:


Готовим испытательные резисторы… У нас это будет 3 китайских проволочных, у них стоит индекс «J», что указывает, что точность резистора ±5% и 2 советских резистора С5-16, с точностью ±1%. Точнее у меня нет, думаю, что этого будет вполне достаточно…


Подсоединяем к щупам Кельвина резистор 0.13 Ом ±1%, подключаем всю конструкцию к блокам питания, амперметр показал ток 98мА, первым делом подстроечным резистором выводим ток до 100мА:


Смотрим, значение напряжения падения на резисторе 0.13 Ом, я так же подключил мультиметр, чтобы проверить правильность показаний купленного в Китае милливольтметра. Как мы видим показания совпадают, никаких подстроек делать не нужно… Напряжение падения на резисторе 13мВ, что равняется сопротивлению 130мОм, или 0,13Ом. (по правилам миллиомы пишутся с маленькой буквы «м», а мегаомы с большой буквы «М»)


Как вы видите наш самодельный миллиомметр работает и имеет достаточную для радиолюбительства точность. Остальные измерения я спрячу под спойлер, кому интересно можете поглядеть, остальным же немного сэкономлю трафик))))

Измерения низкоомных резисторов

Измерение резистора 0.3 Ом ±1%


Измерение резистора 0.1 Ом ±5%


Измерение резистора 0.22 Ом ±5%


И наконец, измерение резистора 1 Ом ±5%


Как мы видим, все сопротивления резисторов уложились в нормы допусков, генератор стабильного тока работает нормально, ток примерно стабилен 100мА ±2% (я гонял подключенную микросхему в течении часа, тепловой дрейф незначительный)… Теперь нужно дождаться источник питания с Banggood и собирать все в корпус…
Я решил не ждать еще месяц доставки ИИП, и выложить обзор без фотографий готового прибора. Если Вас интересует тестировании двухканального независимого источника питания, то напишите в комментариях, я по приходу посылки протестирую и выложу отдельным обзором.

Выводы: Используя мультиметр (или милливольтметр), щупы Кельвина и маленькую кучку радиодеталей, можно за час «на коленке» собрать вполне приличный миллиомметр приставку, позволяющую достаточно точно для радиолюбительской практики измерять малые сопротивления. На этой оптимистичной ноте заканчиваю обзор. Всем мира, добра и весны в душе!!!

Неподкупный метролог из отдела ОТК

Всегда следил за моей работой практически неподкупный метролог и представитель отдела ОТК по кличке Фокс.

UPD: Из-за дебатов в комментариях, решил добавить эксперимент с заменой 4-х проводной схемы на 2-х проводную…
Вариант 1. Схема по Кельвину…

Вариант 2 Замыкаем проволочными перемычками контакты в щупах Кельвина (видно хорошо на фото проволочные перемычки. Сопротивление резистора увеличилось на 1мОм

А теперь меняем 4-х проводную схему на 2-х проводную… Провода толстые 1.5мм, зажимы припаяны… Смотрим на сопротивление 0.13 Ом резистора… Выводы делаем самостоятельно…


UPD2: Благодаря нашему камраду mikas перепаял перемычку десятичной точки на Милливольтметре. Теперь сопротивление показывает сразу в нужном формате. На снимке резистор 0.13Ом


А это резистор 1 Ом

UPD3: Я все-таки заставил работать самодельный миллиомметр от двух аккумуляторов 18650. (от одного не получилось, хоть стояло 2 преобразователя, но показания вольтметра сильно зависело от сопротивления тестируемого резистора. Потому с одним питанием ну никак не получится)
Вот что получилось… Это питание стабилизатора тока. Цепочка: Аккумулятор 18650- плата зарядки и защиты (два в одном)- бустер (повышайка с частотой 1мГц) до 5В.


Собираем в кучу:

Далее добавляем еще один аккумулятор 18650 - бустер (повышайка) до 10В для питания милливольтметра. Вот такая получается «ацкая» конструкция…

Без фото самого девайса, вроде как обзор не полный. Корпус сделал из подручных материалов (переходник для двух прямоугольных труб для кухонной вытяжки, куплен в хозяйственном магазине за 550 тенге), кривовато, но зато сам))) Начинка ещё не вставлена, до сих пор не приехал ИИП.



UPD4: Закончил я сборку прибора. Прибор работает от 2 аккумуляторов формата 18650 и 14500 (большой силовой токовый, малый питание милливольтметра) Стоит 2 платы зарядки с защитой АКБ, и 2 повышающих модуля: на 5В для источника тока и на 10В для питания милливольтметра. Дальше только фотографии, что получилось…








На последнем фото зарядка… Пока каналы отдельные, потом соединю 2 канала на один вход.

Вот теперь точно всё!!! Свою миссию по обзору самодельного миллиоммметра я выполнил до конца. Всем бобра!!!))))

Планирую купить +71 Добавить в избранное Обзор понравился +100 +185

Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе много­предельные амперметр и вольтметр по­стоянного и переменного тока, омметр, а иногда еще и испытатель маломощ­ных транзисторов.

Принципиальная схема подобного упрощенного измерительного при­бора показана на рис. ниже. Он позволя­ет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и со­противления от 50 Ом до 50 кОм. Пе­реключение видов и пределов измере­ния осуществляется включением одного из щупов в гнезда Гн1-Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пре­делов измерения.

Омметр однопредельный. В него вхо­дят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные рези­сторы R1 «Уст. 0» и R2. Перед изме­рением щупы прибора соединяют, и пе­ременным резистором R1 стрелку мик­роамперметра устанавливают на конеч­ную отметку шкалы, являющуюся ну­лем омметра. Затем щупами касаются выводов резистора, обмотки трансформа­тора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют ре­зультат измерения.

Четырехпредельный вольтметр обра­зуют тот же микроамперметр ИП1 и добавочные резисторы R3-R6. С ре­зистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрел­ки микроамперметра на всю шкалу соответствует напряжению 1 В, с ре­зистором R4-3 В, с резистором R5- 10 В, с резистором R6-30 В.

Миллиамперметр пятипредельный: 0-1, 0-3, 0-10, 0-30 и 0-100 мА. Его образует универсальный шунт составленный из резисторов R7-R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микро­амперметр подключался к шунту, через который течет большая часть измеряе­мого тока, а не наоборот.

Конструкция рекомендуемого комби­нированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рам­ки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредст­венно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1-Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопро­тивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соеди­нением нескольких резисторов. В опи­сываемом приборе каждый из резисто­ров R3 и R6, например, составлен из двух последовательно соединенных ре­зисторов, каждый из резисторов R5 и R11 также из двух резисторов, но со­единенных параллельно.

Калибровка вольтметра и миллиам­перметра заключается в подгонке со­противлений добавочных резисторов и универсального шунта под максималь­ные напряжения и токи соответствую­щих пределов измерения, а омметра - к разметке шкалы по образцовым ре­зисторам.

Калибровку вольтметра производите по схеме, показанной на рис. Па­раллельно батарее Б1 напряжением 13,5 В (или от БП) подключите пе­ременный резистор Rp сопротивлением 2-3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выво­дом,- параллельно соединенные само­дельный калибруемый (V K) и образ­цовый (V 0) вольтметры. Образцовым может быть вольтметр заводского аво­метра. Предварительно движок регу­лировочного резистора поставьте в край­нее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений - до 1 В. Постепенно увеличивая напряжение, по­даваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруе­мого вольтметра не доходит до ко­нечной отметки шкалы, это укажет на то, что сопротивление добавочного ре­зистора R3 оказалось больше, чем на­до, а если уходит за пределы шкалы, то - меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы.

Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обя­зательно подавать на вольтметры на­пряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом откло­нение его стрелки на всю шкалу будет соответствовать напряжению 30 В.

Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора - пленочный (СП, СПО) сопротивлением 5-10 кОм и проволочный сопротивле­нием 50-100 Ом. Первый из этих ре­гулировочных резисторов будете ис­пользовать при подгонке резисторов R7-R9, второй - при подгонке рези-, сторов R10 и R11 универсального шунта.

Первым подгоняйте резистор R7 шунта. Для этого соедините последо­вательно (рис. б): образцовый мил­лиамперметр мА 0 , калибруемый мА к, включенный на первый предел изме­рений (до 1 мА), элемент Э1 и пере­менный резистор R p . Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивле­ние регулировочного резистора R v , ус­тановите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиам­перметра была против конечной отмет­ки шкалы.

Аналогично подгоняйте: резистор R8 - на пределе 3 мА, резистор R9- на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 - на пре­деле 30 мА и, наконец, резистор R11- на пределе 100 мА. Подбирая сопро­тивление очередного резистора шунта, уже подогнанные не трогайте - можно сбить калибровку прибора на первых пределах измерения.

Разметить шкалу омметра проще всего с помощью постоянных резисто­ров с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микро­амперметра на конечную отметку шкалы, соответствующую нулю омметра. За­тем разомкните щупы и подключайте к ним резисторы с номинальными со­противлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50-60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае ре­зисторы нужных сопротивлений со­ставляйте из резисторов других номи­налов. Например, резистор сопротивле­нием 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным со­противлениям образцовых резисторов, размечайте (градуируйте) шкалу ом­метра.

Шкалы самодельного комбинирован­ного измерительного прибора должны иметь вид, показанный на рис.

Верхняя из них - шкала омметра, нижняя - общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакиро­ванной бумаге по форме шкалы микро­амперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разби­рать микроамперметр, шкалы самодель­ного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора.

В описанном комбинированном при­боре использован микроамперметр на ток I и =300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относи­тельное входное сопротивление вольт­метра не превышает 3,5 кОм/В. Увели­чить относительное входное сопротив­ление и тем самым уменьшить влияние вольтметра на режим в измеряемой це­пи можно только использованием бо­лее чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное вход­ное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра.

Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения.

Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля.

Литература: В.Г.Борисов. Радиотехнический кружок и его работа.

А.Зотов


П О П У Л Я Р Н О Е:

    Как проверить лампочку, выключатель, предохранитель…?

    Для проверки предохранителя, электрической лампочки накаливания, кипятильника, удлинителя и т.п. совсем необязательно покупать дорогой мультиметр. Можно самому за несколько минут собрать простейший пробник на одной батарейке.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные