Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

На данном уроке мы с вами рассмотрим важную характеристику неравномерного движения - ускорение. Кроме того, мы рассмотрим неравномерное движение с постоянным ускорением. Такое движение еще называется равноускоренным или равнозамедленным. Наконец, мы поговорим о том, как графически изображать зависимости скорости тела от времени при равноускоренном движении.

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

1. Задачи 48, 50, 52, 54 сб. задач А.П. Рымкевич, изд. 10.

2. Запишите зависимости скорости от времени и нарисуйте графики зависимости скорости тела от времени для случаев, изображенных на рис. 1, случаи б) и г). Отметьте на графиках точки поворота, если такие есть.

3. Рассмотрите следующие вопросы и ответы на них:

Вопрос. Является ли ускорение свободного падения ускорением, согласно данному выше определению?

Ответ. Конечно, является. Ускорение свободного падения - это ускорение тела, которое свободно падает с некоторой высоты (сопротивлением воздуха нужно пренебречь).

Вопрос. Что произойдет, если ускорение тела будет направлено перпендикулярно скорости движения тела?

Ответ. Тело будет двигаться равномерно по окружности.

Вопрос. Можно ли вычислять тангенс угла наклона, воспользовавшись транспортиром и калькулятором?

Ответ. Нет! Потому что полученное таким образом ускорение будет безразмерным, а размерность ускорения, как мы показали ранее, должно иметь размерность м/с 2 .

Вопрос. Что можно сказать о движении, если график зависимости скорости от времени не является прямой?

Ответ. Можно сказать, что ускорение этого тела меняется со временем. Такое движение не будет являться равноускоренным.

Ско́рость в физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени.

Скорость в широком смысле - быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Ускоре́ние обозначается - быстрота изменения скорости, то есть первая производная от скорости по времени,векторная величина, показывающая, на сколько изменяется вектор скорости тела при его движении за единицу времени:

ускорение является вектором, то есть учитывает не только изменение величины скорости (модуля векторной величины), но и изменение её направления. В частности, ускорение тела, движущегося по окружности с постоянной по модулю скоростью, не равно нулю; тело испытывает постоянное по модулю (и переменное по направлению) ускорение, направленное к центру окружности (центростремительное ускорение).

Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s2, м/с2),

Производная ускорения по времени, то есть величина, характеризующая скорость изменения ускорения, называется рывок:

Где - вектор рывка.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0. Тогда определить ускорение можно так:

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть

то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходитзамедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Все задачи, в которых присутствует движение объектов, их перемещение или вращение, так или иначе связаны со скоростью.

Данный термин характеризует перемещение объекта в пространстве за определенный отрезок времени – число единиц расстояния за единицу времени. Он является частым «гостем» как разделов математики, так и физики. Исходное тело может менять свое расположение как равномерно, так и с ускорением. В первом случае величина скорости статична и в ходе движения не меняется, во втором наоборот – увеличивается или уменьшается.

Как найти скорость – равномерное движение

Если скорость движения тела оставалась неизменной от начала перемещения и до окончания пути, то речь идет о перемещении с постоянным ускорением – равномерном движении. Оно может быть прямолинейным или же криволинейным. В первом случае траекторией перемещения тела является прямая.

Тогда V=S/t, где:

  • V – искомая скорость,
  • S – пройденное расстояние (общий путь),
  • t – общее время движения.

Как найти скорость – ускорение постоянно

Если объект двигался с ускорением, то его скорость по мере движения менялась. В таком случае найти искомую величину поможет выражение:

V=V (нач) + at, где:

  • V (нач) – первоначальная скорость движения объекта,
  • a – ускорение тела,
  • t – общее время пути.

Как найти скорость – неравномерное движение

В данном случае имеет место ситуация, когда разные участки пути тело проходило за разное время.
S(1) – за t(1),
S(2) – за t(2) и т.д.

На первом участке движение происходило в “темпе” V(1), на втором – V(2) и т.д.

Чтобы узнать скорость перемещения объекта на всем пути (ее среднее значение) воспользуйтесь выражением:

Как найти скорость – вращение объекта

В случае вращения речь идет об угловой скорости, определяющей угол, на который поворачивается элемент за единицу времени. Обозначается искомая величина символом ω (рад/с).

  • ω = Δφ/Δt, где:

Δφ – пройденный угол (приращение угла),
Δt – прошедшее время (время движения – приращение времени).

  • В случае, если вращение равномерное, искомая величина (ω) связана с таким понятием как период вращения – за какое время наш объект совершит 1 полный оборот. В таком случае:

ω = 2π/T, где:
π – константа ≈3,14,
T – период.

Или ω = 2πn, где:
π – константа ≈3,14,
n – частота обращения.

  • При известной линейной скорости объекта для каждой точки на пути движения и радиусе окружности, по которой она перемещается, для нахождения скорости ω потребуется следующее выражение:

ω = V/R, где:
V – численное значение векторной величины (линейной скорости),
R – радиус траектории следования тела.


Как найти скорость – сближение и отдаление точек

В подобного рода задачах уместным будет использование терминов скорость сближения и скорость отдаления.

Если объекты направляются друг к другу, то скорость сближения (отдаления) будет следующей:
V (сближ) = V(1) + V(2), где V(1) и V(2) – скорости соответствующих объектов.

Если одно из тел догоняет другое, то V (сближ) = V(1) – V(2), V(1) больше V(2).

Как найти скорость – движение по водоему

Если события разворачиваются на воде, то к собственной скорости объекта (движение тела относительно воды) добавляется еще и скорость течения (т.е. движение воды относительно неподвижного берега). Как взаимосвязаны эти понятия?

В случае перемещения по течению V=V(собст) + V(теч).
Если против течения – V=V(собств) – V(теч.).

Ускорение - знакомое слово. Не инженеру оно чаще всего попадается в новостных статьях и выпусках. Ускорение развития, сотрудничества, других общественных процессов. Исконное же значение этого слова связано с физическими явлениями. Как найти ускорение движущегося тела, или ускорение, как показатель мощности автомобиля? А может ли оно иметь иные значения?

Что происходит между 0 и 100 (определение термина)

Показателем мощности автомобиля принято считать время его разгона от нуля до сотни. А что же происходит в промежутке? Рассмотрим нашу "Ладу Веста" с ее заявленными 11 секундами.

Одна из формул как найти ускорение записывается так:

a = (V 2 - V 1) / t

В нашем случае:

a - ускорение, м/с∙с

V1 - начальная скорость, м/с;

V2 - конечная скорость, м/с;

Приведем данные в систему СИ, а именно км/ч пересчитаем в м/с:

100 км/ч = 100000 м / 3600 с = 27,28 м/с.

Теперь можно найти ускорение движения "Калины":

a = (27,28 - 0) / 11 = 2,53 м/с∙с

Что обозначают эти цифры? Ускорение 2,53 метров в секунду за секунду говорит о том, что за каждую секунду скорость «болида» увеличивается на 2,53 м/с.

При старте с места (с нуля):

  • за первую секунду автомобиль разгонится до скорости 2,53 м/с;
  • за вторую - до 5,06 м/с;
  • к концу третьей секунды скорость составит 7,59 м/с и т. д.

Таким образом, можно подытожить: ускорение - рост скорости точки за единицу времени.

Второй закон Ньютона, это несложно

Итак, величина ускорения вычислена. Самое время задаться вопросом, откуда же это ускорение берется, что является его первоисточником. Ответ один - сила. Именно сила, с которой колеса толкают автомобиль вперед, и вызывает его ускорение. И как найти ускорение, если величина этой силы известна? Зависимость между этими двумя величинами и массой материальной точки была установлена Исааком Ньютоном (это произошло не в тот день, когда ему на голову упало яблоко, тогда он открыл другой физический закон).

А записывается этот закон так:

F = m ∙ a, где

F - сила, Н;

m - масса, кг;

a - ускорение, м/с∙с.

Применительно к изделию российского автопрома, можно подсчитать силу, с которой колеса толкают машину вперед.

F = m ∙ a = 1585 кг ∙ 2,53 м/с∙с = 4010 Н

или 4010 / 9,8 = 409 кг∙с

Это означает, что если не отпускать педаль газа, то машина будет набирать скорость до достижения скорости звука? Конечно же, нет. Уже при достижении ею скорости 70 км/ч (19,44 м/с) лобовое сопротивление воздуха достигает 2000 Н.

Как найти ускорение в момент времени, когда Лада «летит» с такой скоростью?

a = F / m = (F колес - F сопр.) / m = (4010 - 2000) / 1585 = 1,27 м/с∙с

Как видим, формула позволяет находить как ускорение, зная силу с которой на механизм воздействуют двигатели (другие силы: ветра, потока воды, вес и т. д.), так и наоборот.

Для чего необходимо знать ускорение

В первую очередь для того, чтобы вычислить скорость какого-либо материального тела в интересующий момент времени, а так же его местоположение.

Предположим, что наша "Лада Веста" разгоняется на Луне, где нет лобового сопротивления воздуха по причине отсутствия такового, тогда ускорение ее на каком-то этапе будет стабильным. В этом случае определим скорость машины через 5 секунд после старта.

V = V 0 + a ∙ t = 0 + 2,53 ∙ 5 = 12,65 м/с

или 12,62 ∙ 3600 / 1000 = 45,54 км/ч

V 0 - начальная скорость точки.

А на каком расстоянии от старта окажется в этот момент наш лунный автомобиль? Для этого проще всего воспользоваться универсальной формулой определения координаты:

x = x 0 + V 0 t + (at 2) / 2

х = 0 + 0 ∙ 5 + (2,53 ∙ 5 2) / 2 = 31,63 м

x 0 - начальная координата точки.

Именно на такое расстояние успеет за 5 секунд удалиться "Веста" от линии старта.

Но на деле, для того, чтобы найти скорость и ускорение точки в заданный момент времени, в реальности необходимо учитывать и просчитывать множество других факторов. На Луну, понятное дело, "Лада Веста" если и попадет, то нескоро, на ее ускорение, кроме мощности нового инжекторного движка, влияет не только сопротивление воздуха.

На разных оборотах мотора, он выдает разное усилие, это еще не беря в расчет номер включенной передачи, коэффициент сцепления колес с дорогой, уклон этой самой дороги, скорость ветра и многое другое.

Какие еще бывают ускорения

Сила умеет не только заставлять тело двигаться вперед по прямой. Например, сила притяжения Земли заставляет Луну постоянно искривлять траекторию своего полета таким образом, что она всегда кружится вокруг нас. На Луну в данном случае воздействует сила? Да, это та самая сила, которая и была открыта Ньютоном с помощью яблока - сила притяжения.

И ускорение, которое она придает нашему естественному спутнику, называется центростремительным. Как найти ускорение Луны при ее движении по орбите?

a ц = V 2 / R = 4π 2 R / T 2 , где

a ц - центростремительное ускорение, м/с∙с;

V - скорость движения Луны по орбите, м/с;

R - радиус орбиты, м;

T- период обращения Луны вокруг Земли, с.

a ц = 4 π 2 384 399 000 / 2360591 2 = 0,002723331 м/с∙с

Следующий шаг на пути к уравнениям движения - это введение величины, которая связана с изменением скорости движения. Естественно спросить: а как изменяется скорость движения? В предыдущих главах мы рассматривали случай, когда действующая сила приводила к изменению скорости. Бывают легковые машины, которые набирают с места за скорость . Зная это, мы можем определить, как изменяется скорость, но только в среднем. Займемся следующим более сложным вопросом: как узнать быстроту изменения скорости. Другими словами, на сколько метров в секунду изменяется скорость за . Мы уже установили, что скорость падающего тела изменяется со временем по формуле (см. табл. 8.4), а теперь хотим выяснить, насколько она изменяется за . Эта величина называется ускорением.

Таким образом, ускорение определяется как быстрота изменения скорости. Всем сказанным ранее мы уже достаточно подготовлены к тому, чтобы сразу записать ускорение в виде производной от скорости, точно так же как скорость записывается в виде производной от расстояния. Если теперь продифференцировать формулу , то получим ускорение падающего тела

(При дифференцировании этого выражения использовался результат, полученный нами раньше. Мы видели, что производная от равна просто (постоянной). Если же выбрать эту постоянную равной 9,8, то сразу находим, что производная от равна 9,8.) Это означает, что скорость падающего тела постоянно возрастает на за каждую секунду. Этот же результат можно получить и из табл. 8.4. Как видите, в случае падающего тела все получается довольно просто, но ускорение, вообще говоря, непостоянно. Оно получилось постоянным только потому, что постоянна сила, действующая на падающее тело, а по закону Ньютона ускорение должно быть пропорционально силе.

В качестве следующего примера найдем ускорение в той задаче, с которой мы уже имели дело при изучении скорости:

.

Для скорости мы получили формулу

Так как ускорение - это производная скорости по времени, то для того, чтобы найти его значение, нужно продифференцировать эту формулу. Вспомним теперь одно из правил табл. 8.3, а именно что производная суммы равна сумме производных. Чтобы продифференцировать первый из этих членов, мы но будем проделывать всю длинную процедуру, которую делали раньше, а просто напомним, что такой квадратичный член встречался нам при дифференцировании функции , причем в результате коэффициент удваивался, а превращалось в . Вы можете сами убедиться в том, что то же самое произойдет и сейчас. Таким образом, производная от будет равна . Перейдем теперь к дифференцированию второго слагаемого. По одному из правил табл. 8.3 производная от постоянной будет нулем, следовательно, этот член не даст в ускорение никакого вклада. Окончательный результат: .

Выведем еще две полезные формулы, которые получаются интегрированием. Если тело из состояния покоя движется с постоянным ускорением , то его скорость в любой момент времени будет равна

а расстояние, пройденное им к этому моменту времени,

Заметим еще, что поскольку скорость - это , а ускорение - производная скорости по времени, то можно написать

. (8.10)

Так что теперь мы знаем, как записывается вторая производная.

Существует, конечно, и обратная связь между ускорением и расстоянием, которая просто следует из того, что . Поскольку расстояние является интегралом от скорости, то оно может быть найдено двойным интегрированием ускорения. Все предыдущее рассмотрение было посвящено движению в одном измерении, а теперь мы коротко остановимся на движении в пространстве трех измерений. Рассмотрим движение частицы в трехмерном пространстве. Эта глава началась с обсуждения одномерного движения легковой машины, а именно с вопроса, на каком расстоянии от начала движения находится машина в различные моменты времени. Затем мы обсуждали связь между скоростью и изменением расстояния со временем и связь между ускорением и изменением скорости. Давайте в той же последовательности разберем движение в трех измерениях. Проще, однако, начать с более наглядного двумерного случая, а уж потом обобщить его на случай трех измерений. Нарисуем две пересекающиеся под прямым углом линии (оси координат) и будем задавать положение частицы в любой момент времени расстояниями от нее до каждой из осей. Таким образом, положение частицы задается двумя числами (координатами) и , каждое из которых является соответственно расстоянием до оси и до оси (фиг. 8.3). Теперь мы можем описать движение, составляя, например, таблицу, в которой эти две координаты заданы как функции времени. (Обобщение на трехмерный случай требует введения еще одной оси, перпендикулярной двум первым, и измерения еще одной координаты . Однако теперь расстояния берутся не до осей, а до координатных плоскостей.) Как определить скорость частицы? Для этого мы сначала найдем составляющие скорости по каждому направлению, или ее компоненты. Горизонтальная составляющая скорости, или -компонента, будет равна производной по времени от координаты , т. е.

а вертикальная составляющая, или -компонента, равна

В случае трех измерений необходимо еще добавить

Фигура 8.3. Описание движения тела на плоскости и вычисление его скорости.

Как, зная компоненты скорости, определить полную скорость в направлении движения? Рассмотрим в двумерном случае два последовательных положения частицы, разделенных коротким интервалом времени и расстоянием . Из фиг. 8.3 видно, что

(8.14)

(Значок соответствует выражению «приблизительно равно».) Средняя скорость в течение интервала получается простым делением: . Чтобы найти точную скорость в момент , нужно, как это уже делалось в начале главы, устремить к нулю. В результате оказывается, что

. (8.15)

В трехмерном случае точно таким же способом можно получить

(8.16)

. Что это за движение? Так как

Эту связь между координатами и можно рассматривать как уравнение траектории движения шарика. Вели изобразить ее графически, то получим кривую, которая называется параболой (фиг. 8.4). Так что любое свободно падающее тело, будучи брошенным в некотором направлении, движется по параболе.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные