Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Важным составляющим элементом для комфортного времяпрепровождения в загородном доме является наличие автономного водоснабжения. Однако не всегда есть возможность подключиться к централизованным сетям водоснабжения. В этом случае на участке придётся бурить скважину или копать колодец. Но этого недостаточно для полноценного обеспечения дома водой. Ведь вы не собираетесь таскать воду вёдрами. Чтобы создать полностью автоматическое водоснабжение, потребуется насосное оборудование и дополнительная автоматика, а также определённая схема управления насосом. Для бесперебойной работы насоса используется система управления, которая может собираться по разным схемам. Именно их мы и рассмотрим в нашей статье.

Чтобы система водоснабжения загородного дома была автоматической и работала без вашего вмешательства, необходим автомат (система автоматики), которая будет поддерживать определённое давление в системе и управлять запуском и остановкой насосного оборудования.

Чтобы управление насосом было простым и надёжным, помимо стандартной аппаратуры общего назначения (контакторов, магнитных пускателей, переключателей и промежуточных реле) используются специальные устройства контроля и управления. К ним можно отнести следующие изделия:

  • струйные реле;
  • датчики контроля давления и уровня жидкости;
  • электродные реле;
  • ёмкостные датчики;
  • манометры;
  • поплавковые датчики уровня.

Варианты управления насосным оборудованием


Для управления погружным насосом используются следующие виды приборов:

  • пульт управления, состоящий из блока необходимых механизмов;
  • прессконтроль;
  • автомат для управления, который поддерживает определённое давление в системе водоснабжения.

Пульт управления – это довольно простой блок, который позволяет уберечь насосное изделие от перепадов напряжения и коротких замыканий. Автоматический режим функционирования можно получить, если подключить блок управления к реле давления и уровня жидкости. В некоторых случаях пульт управления присоединяют к поплавковому датчику. Цена такого блока управления невысокая, но её эффективность без использования защиты насоса от работы на сухую и реле давления под сомнением.

Совет: для самостоятельного монтажа лучше использовать блок со встроенной системой.

Блок управления в виде прессконтроля имеет встроенную пассивную защиту от работы на сухую, а также оборудование для автоматизированной работы насоса. Для управления системе требуется контролировать ряд параметров, а именно давление жидкости и уровень потока. К примеру, если расход воды превышает 50 литров в минуту, то насосное оборудование под управлением прессконтроля работает без остановки. Автомат срабатывает и отключает насос, если водяной поток уменьшается, а давление в системе повышается. Если расход жидкости меньше 50 литров в минуту, то насосное изделие запускается при снижении давления в системе до 1,5 бар. Такая работа автомата особенно важна при резких скачках давления, когда нужно сократить количество запусков и остановок насоса при минимальном расходе.

Автомат для управления, который позволяет поддерживать постоянное давление в системе, необходимо использовать там, где любые скачки давления крайне нежелательны.

Внимание: если показатели давления будут постоянно завышены, то расход электроэнергии увеличится, а КПД насоса наоборот понизится.

Шкаф управления


Наиболее совершенный автомат для контроля над работой насосного оборудования – это шкаф управления. В это устройство встроены все необходимые узлы и предохранительные блоки для управления погружным насосом.

С помощью такого шкафа можно решить множество задач:

  1. Оборудование обеспечивает безопасный плавный запуск двигателя.
  2. Осуществляется регулировка работы частотного преобразователя.
  3. Устройство отслеживает эксплуатационные параметры системы автономного водоснабжения, а именно давление, температуру жидкости, уровень воды в скважине.
  4. Автомат выравнивает характеристики тока, подающегося на клеммы двигателя, а также регулирует частоту вращения вала насосного оборудования.

Также есть шкафы управления, которые могут обслуживать несколько насосов. Эти изделия могут решать ещё больше задач:

  1. Они будут контролировать периодичность работы насосов, что позволит увеличить срок службы агрегатов, поскольку благодаря блоку управления может обеспечиваться равномерный износ механических частей.
  2. Специальные реле будут отслеживать непрерывную работу насосных изделий. При выходе из строя одного агрегата, работа будет перекладываться на второе изделие.
  3. Также система автоматики может самостоятельно контролировать исправность насосного оборудования. Во время длительного бездействия насосов будет предотвращаться их заиливание.

В стандартную комплектацию шкафа управления входят следующие узлы и элементы:

  • Корпус в виде стальной коробки с дверками.
  • На основе крышки корпуса изготавливается лицевая панель. В неё встроены кнопки пуска и остановки. На панели устанавливаются индикаторы работы насоса и датчиков, а также реле для выбора автоматического и ручного режима работы.
  • Возле входа в аппаратный отсек шкафа устанавливается устройство контроля фаз, которое состоит из 3-х датчиков. Этот блок отслеживает нагрузку по фазам.
  • Контактор – это изделие для подачи электрического тока на клеммы насоса и отключения агрегата от сети.
  • Предохранительное реле для защиты от короткого замыкания. В случае замыкания будет повреждён плавкий предохранитель, а не обмотка электродвигателя насоса или узлы и детали шкафа.
  • Для контроля над работой агрегата в шкафу стоит блок управления. Здесь есть датчики переполнения, запуска и остановки насоса. При этом клеммы этих датчиков выводятся в скважину или гидробак.
  • Для управления вращением вала электродвигателя используется частотный преобразователь. Он позволяет плавно сбрасывать и наращивать частоту вращения двигателя при запуске и остановке насосного оборудования.
  • Датчики температуры и давления присоединяются к контактору и предотвращают запуск насоса в неподходящих условиях.

Простейшая схема управления


Применение простой схемы оправдано для обустройства водоснабжения небольшого дачного дома. В этом случае ёмкость для сбора воды лучше разместить на небольшом возвышении. Из накопительного бака по системе трубопроводов вода будет поставляться в разные места приусадебного участка и в дом.

Совет: в качестве накопительной ёмкости можно использовать металлическую, пластиковую или деревянную бочку или бак.

Самую простую схему управления насосным оборудованием несложно реализовать самостоятельно, поскольку она состоит из небольшого числа элементов. Главное достоинство такой схемы – надёжность и простота установки.

Принцип работы данной схемы управления состоит в следующем:

  1. Для включения и отключения насосного оборудования используется контактное реле (К 1.1) нормально-замкнутого типа.
  2. Схема подразумевает два режима работы – подъём воды из скважины и дренаж. Выбор того или иного режима осуществляется при помощи переключателя (S2).
  3. Для контроля уровня воды в накопительной ёмкости используются реле F 1 и 2.
  4. При снижении воды в баке ниже уровня расположения датчика F1 происходит включение питания через переключатель S При этом катушка реле будет обесточена. Запуск насосного оборудования происходит при замыкании контактов на реле К1.1.
  5. После подъёма уровня жидкости до датчика F1 произойдёт открывание транзистора VT1 и включение реле К1. При этом контакты нормально-замкнутого типа на реле К1.1 разомкнутся и насосное оборудование отключится.

В данной системе управления используется маломощный трансформатор, который можно взять во вращательном приёмнике. При сборке системы важно, чтобы на конденсатор С1 подавалось напряжение не менее 24 В. Если у вас нет диодов КД 212 А, то вместо них можно использовать любые диоды с выпрямленным током в пределах 1 А, при этом обратное напряжение должно быть более 100 В.

Устройство, сделанное своими руками на одном транзисторе, может изготовить практически любой, кто этого захочет и приложит небольшие усилия для закупки очень недорогих и не многочисленных комплектующих и спаяет их в схему. Применяется она для автоматического пополнения воды в расходных ёмкостях дома, на даче и везде, где присутствует вода, без ограничений. А таких мест очень много. Для начала рассмотрим схему этого устройства. Проще просто не бывает.

Контроль уровня воды в автоматическом режиме с помощью простейшего электронного Схема контроля уровня воды.
Вся схема управления уровнем воды состоит из нескольких простых деталей и если без ошибок собрана из хороших деталей, то не нуждается в настройке и сразу заработает, как запланировано. У меня подобная схема без сбоев работает уже почти три года, и я ей очень доволен.

Схема автоматического управления уровнем воды

Список деталей

  • Транзистор можно применить любой из этих: КТ815А или Б. TIP29A. TIP61A. BD139. BD167. BD815.
  • ГК1 – геркон нижнего уровня.
  • ГК2 – геркон верхнего уровня.
  • ГК3 – геркон аварийного уровня.
  • D1 – любой красный светодиод.
  • R1 – резистор 3Ком 0.25 ватт.
  • R2 – резистор 300 Ом 0.125 ватт.
  • К1 – любое реле на 12 вольт с двумя парами нормально разомкнутыми контактами.
  • К2 – любое реле на 12 вольт с одной парой нормально разомкнутых контактов.
  • В качестве источников сигнала для пополнения воды в ёмкость, я применил поплавковые герконовые контакты. На схеме обозначаются ГК1, ГК2 и ГК3. Китайского производства, но очень приличного качества. Ни одного плохого слова сказать не могу. В ёмкости, где они стоят, у меня происходит обработка воды озоном и за годы работы на них ни малейшего повреждения. Озон является крайне агрессивным химическим элементом и многие пластики он растворяет совершенно без остатка.



Теперь рассмотрим работу схемы в автоматическом режиме.
При подаче питания на схему, срабатывает поплавок нижнего уровня ГК1 и через его контакт и резисторы R1и R2 подаётся питание на базу транзистора. Транзистор открывается и тем самым подаёт питание на катушку реле К1. Реле включается и своим контактом К1.1 блокирует ГК1 (нижний уровень), а контактом К1.2 подаёт питание на катушку реле К2, которое является исполнительным и включает своим контактом К2.1 исполнительный механизм. Исполнительным механизмом может быть насос для воды или электрический клапан, которые подают воду в ёмкость.
Вода пополняется и когда превысит нижний уровень, выключится ГК1, тем самым подготавливая следующий цикл работы. Достигнув верхнего уровня, вода поднимет поплавок и включит ГК2 (верхний уровень) тем самым замыкая цепочку через R1, К1.1, ГК2. Питание на базу транзистора прервётся, и он закроется, выключив реле К1, которое своими контактами разомкнёт К1.1 и выключит реле К2. Реле, в свою очередь выключит исполнительный механизм. Схема подготовлена к новому циклу работы. ГК3 является поплавком аварийного уровня и служит страховкой, если вдруг не сработает поплавок верхнего уровня. Диод D1 является индикатором работы устройства в режиме наполнения воды.
А теперь приступим к изготовлению этого очень полезного устройства.

Размещаем детали на плату.


Все детали размещаем на макетной плате, чтобы не делать печатную. При размещении деталей, нужно учитывать, чтобы паять как можно меньше перемычек. Нужно максимально использовать проводники самих элементов для монтажа.








Окончательный вид.

В статье описывается простая и надежная схема управления электронасосом. Несмотря на предельную простоту схемы устройство может работать в двух режимах: водоподъем и дренаж.

На дачном участке или в фермерском хозяйстве без воды обойтись просто невозможно. В таких отдаленных местах централизованного водопровода, как правило, нет, поэтому способов добычи воды здесь не так уж и много. Это колодец, скважина или открытый водоем. Если на дачном участке есть электричество, то проблему водоснабжения лучше всего решить с помощью электронасоса.

При этом насос может работать либо в режиме наполнения емкости, либо в дренажном режиме - выкачивании воды из емкости, колодца или скважины. В первом случае возможен перелив через край емкости, а во втором случае, сухой ход насоса. Для любого насоса такой режим очень вреден тем, что без воды ухудшаются условия охлаждения, и мотор может выйти из строя. Поэтому, даже в таких простейших случаях, требуется схема управления насосом.

Для устройства дачного водоснабжения на некотором возвышении желательно установить емкость, в которую насосом будет подаваться вода. В нужные места участка и дома вода из емкости будет подаваться с помощью водопроводных труб. В летнее время будет обеспечен подогретой солнечными лучами водой, а после работы на участке можно будет принять душ.

Один из возможных вариантов схемы показан на рисунке 1.

Рисунок 1. Схема управления садовым насосом.

Количество деталей схемы невелико, что позволяет собрать ее методом навесного монтажа просто на куске пластмассы или даже фанеры, без разработки печатной платы. Надежность работы ее очень велика, ведь при таком количестве деталей ломаться просто нечему.

Включение - выключение насоса производится нормально-замкнутым контактом реле K1.1. Переключателем S2 выбирается режим работы (Водоподъем - Дренаж). На схеме переключатель находится в положении «Водоподъем».

Уровень воды в резервуаре контролируется датчиками F1 и F2. Конструкция датчиков и самой схемы такова, что корпус резервуара ни с чем не соединен, поэтому электрохимическая коррозия резервуара полностью исключена. Более того, резервуар может быть выполнен из пластмассы или дерева, поэтому возможно применение даже обычной деревянной бочки.

Возможный вариант конструкции датчиков. Датчик для автоматического уравления наосом можно сделать из двух планок из изоляционного материала, который не смачивается водой. Это может быть оргстекло или фторопласт, а токопроводящие пластины желательно выполнить из нержавеющей стали. Очень подойдут для этих целей лезвия от безопасных бритв.

Еще один вариант датчика - просто три стержня диаметром около 4 - 6 мм, укрепленных на общем изолирующем основании: средний электрод подсоединен к базе транзистора, а два других, просто обрезаны на нужную длину, как на принципиальной схеме.

При включении питания выключателем S1, если уровень воды ниже датчика F1 катушка реле K1 обесточена, поэтому насос запустится через нормально-замкнутые контакты реле K1.1. Когда вода поднимется до датчика верхнего уровня F1, откроется транзистор VT1, который включит реле K1. Его нормально-замкнутые контакты K1.1 разомкнутся и насос остановится.

Одновременно с этим замкнутся контакты реле K1.2, которые подключат электрод нижнего уровня F2 к базе транзистора VT1. Поэтому при убывании уровня воды ниже датчика F1 отключения реле не происходит (напомним, что запуск насоса осуществляется при отпущенном реле K1), так как транзистор открыт током базы по цепочке R2, K1.2 F2 и реле K1 удерживается в включенном состоянии. Поэтому насос не запускается.

Когда уровень воды опустится ниже электрода F2, ток базы прервется, и транзистор VT1 закроется и выключит реле K1, нормально-замкнутые контакты которого запустят насос. Далее цикл повторится снова. Если переключатель S2 установить в правое по схеме положение, то насос будет работать в дренажном режиме. При этом следует учесть такое обстоятельство: если это насос погружного типа, во избежание сухого хода его заборная часть должна находиться ниже датчика нижнего уровня F2.

Несколько слов о деталях . Схема некритична к типам используемых деталей. В качестве трансформатора подойдет любой маломощный трансформатор, например от трехпрограммных вещательных приемников или от китайских адаптеров постоянного тока. При этом напряжение на конденсаторе C1 должно быть не менее 24 В.

Вместо диодов КД212А подойдут любые с выпрямленным током около 1 А и обратным напряжением не менее 100 В. транзистор VT1 можно заменить на КТ829 с любой буквой или на КТ972А. конденсатор C1 типа К50-35 или импортный.

Светодиод HL1 указывает на подключение устройства к сети. Его можно заменить любым светодиодом красного цвета свечения. В схеме используется реле типа ТКЕ52ПОД, которое можно заменить любым с катушкой на напряжение 24 В и с контактами, способными выдержать ток, потребляемый насосом.

Правильно собранное из исправных деталей устройство управления насосом в наладке, как правило, не нуждается. Но перед установкой его в резервуар лучше произвести проверку, что называется, на столе: вместо насоса временно подключить лампочку небольшой мощности, а работу электродов можно имитировать и в стакане с водой, а то и вовсе без воды.

Для этого надо включить схему при этом лампочка должна зажечься. Потом замкнуть электрод F2, - лампочка продолжает гореть. Не размыкая электрода F2, замкнуть электрод F1, и лампочка должна погаснуть.

После этого последовательно разомкнуть электроды F1 и F2, - лампочка погаснет только после размыкания последнего. Если все сработает именно так, то можно смело подключать насос и пользоваться собственной водокачкой.

Борис Аладышкин

Управление оборудованием в зависимости от уровня жидкости, получило огромное распространение и весьма востребовано, как в повседневной бытовой деятельности, так и в промышленности.

Вот основные примеры применения автоматики управления в зависимости от уровня жидкости:

  • Наполнение и опорожнение бассейнов
  • Защита от протечек и затопления
  • Автоматическая откачка воды из подвалов, шахт, колодцев, котлованов и пр.
  • Откачка канализационных стоков
  • Наполнение накопительных емкостей
  • Защита насосов от работы без воды
  • Регулирование рабочего уровня в малодебитных скважинах и колодцах
  • Защита нагревательных приборов от работы без воды

Устройства контроля уровня имеют разный принцип работы, но в конечном итоге их назначение сводится к одному свойству - разрывать или замыкать электрическую цепь в зависимости от уровня жидкости.

Трехфазные насосы возможно подключить только используя магнитный пускатель.

Устройства управления могут быть механическими или электронными.

Стоимость механических устройств, как правило ниже, но там где требуется максимальная точность и (или) надежность срабатывания, предпочтительно использование электронных устройств регулирования уровня.

Такие устройства используют кондуктометрический метод определения наличия жидкости.

Метод основан на электрической проводимости большинства жидкостей. Электроды из нержавеющей стали опускаются в воду на необходимый уровень по которому определяется алгоритм работы насоса.

В случае использования непроводящих ток жидкостей (бензин, солярка, растворители и пр.), обычно используются приборы использующие оптические датчики.

Рассмотрим подробнее основные устройства, позволяющее отслеживать уровень жидкости и управлять оборудованием. Хочется отметить, что в качестве примеров будем рассматривать управление насосным оборудованием, но это могут быть не только насосы, а и электроклапаны, ТЭНы, компрессоры и прочее электроуправляемое оборудование.

Рассмотрим подробнее:

Электрический поплавковый выключатель

Электрический поплавковый выключатель применяется, как для управления насосами на откачивание, так и для наполнения.

Принцип работы:

В корпусе поплавка находится металлический шар, перемещающийся по каналу. В крайнем положении шар воздействует на электрический выключатель, включая или отключая его. Положение шара зависит от положения поплавка.

Когда поплавок всплывает, шар перемещается в одно крайнее положения, при опускании поплавка вниз, шар перемещается в противоположное положение.

К поплавку подходит герметично смонтированный электрический кабель. В зависимости от его подключения к переключателю поплавка, выключатель может иметь три исполнения: работа на опорожнение, работа на наполнение и универсальный вариант, который в зависимости от электрического подключения может работать, как на наполнение, так и на опорожнение. Такие выключатели имеют дополнительный провод.

Как правило, поплавковые выключатели оснащены грузом, который крепится на электрическом кабеле и может по нему перемещаться. Путем перемещения груза по кабелю и регулируя глубину погружения груза, можно настроить поплавковый выключатель на определенный уровень включения и отключения.

Надежность срабатывания поплавкового выключателя - низкая и средняя, зависит от модели и производителя.

Точность управление уровнем - низкая.

Для объектов, где требуется высокая надежность срабатывания автоматики или точное управления уровнем, данный вид автоматики не рекомендуется.

Чаще всего, поплавковый выключатель, выходит из строя по причине прогорания контактов переключателя поплавка. Чтобы избежать этого, следует подключать поплавковый выключатель к насосу через магнитный пускатель или устройство с аналогичными функциями.

Напряжение коммутации – 220…240 В ~ 50Гц.

Максимальный рабочий / пусковой ток - 10А / 18А.

Максимальная глубина погружения – не более 0,7м.

Диапазон температуры воды – (+1 … +40) °С.

Класс защиты изделия – IP 68



Кондуктометрический метод управления

Существует значительно более надежный метод контроля и управления за уровнем жидкости - это кондуктометрический метод. Подходит, правда, только для токопроводящих жидкостей, но подавляющее большинство задач касается регулирования уровня воды, которая отлично проводит ток.
Принцип основан на том, что в жидкость погружаются электроды, между которыми протекает малый ток с небольшим напряжением. Специальный контроллер, таким образом с абсолютной точностью отслеживает уровень жидкости. Метод обладает высокой надежность, точностью регулирования и более гибки режим, т.к. можно произвольно выставить уровни.

Приведем пример: существует скважина с низким дебитом, соответственно скважинный насос требуется защитить от работы без воды максимально надежно и обеспечить его комфортную работу. Только кондуктометрическим способом мы можем обеспечить правильный режим эксплуатации насоса и высокую надежность срабатывания.
Мы можем задать режим, при котором насос будет отключаться при недопустимом уровне жидкости, а включаться только при полном восстановлении уровня воды в скважине. Это позволит не только защитить насос, но и обеспечить редкий запуск насоса. В противном случае его ресурс сильно сократится, т.к. небольшой подъем воды включит насос, который в считанные секунды эту воду выкачает и вновь отключится. И так короткими циклами. Это и некомфортно и быстро выведет насос из строя.
Контроллер - универсальное коммутирующее изделие, которому можно найти массу применений и расширить функционал. Например, вы хотите знать о аварийной ситуации - подключаем модульный зуммер или лампу, которая будет сигнализировать о неисправности. Подключив краны с сервоприводом, легко построить систему защиты от протечки воды. И многое другое.

В качестве электродов для кондуктометрической системы подойдет любой токопроводящий металлический предмет. Но так, как многие материалы окисляются и ржавеют, то рекомендуется в качестве электродов использовать элементы из латуни и нержавеющей стали.
Предлагаемые заводские электроды можно посмотреть

В качестве общего (нижнего) электрода, так же можно использовать корпус контролируемой емкости, если она металлическая. При автоматизации погружного насоса в качестве общего электрода может выступать корпус самого насоса, тогда просто подключаем клемму общего электрода на контакт земли кабеля насоса.

Электронный блок управления насосом по уровню HRH-5

HRH-5 - самое продвинутое, на данный момент, решение по управлению оборудованием в зависимости от уровня жидкости.

Блок HRH-5 способен управлять, как насосами на опорожнение, так и насосами, работающими на наполнение накопительной емкости. Так же широко применяется для защиты насосов и нагревательных элементов от работы без воды.

Блок использует кондуктометрический метод определения наличия жидкости. Его конструкция, делает этот блок абсолютно универсальным и приспособленным для любых, управляемых по уровню жидкости, систем управления оборудованием.

Блок HRH-5 имеет модульную конструкцию с монтажом в распределительный шкаф на DIN рейку.

HRH-5 управляет оборудованием через трехполюсное реле. К данному реле можно подключить однофазный насос с потребляемым током до 8А и мощностью до 1700 Вт. В то же время, для обеспечения высокого срока эксплуатации, рекомендуется подключать насосы через магнитный пускатель. Так же через магнитный пускатель подключаются трехфазные насосы и однофазные насосы большей мощности.

Принцип работы блока HRH-5 основан на электрической проводимости большинства видов жидкостей (вода, молоко и пр.). В жидкость помещаются электроды (не входят в комплект поставки) из нержавеющей стали. Электрический ток, имеющий низкое напряжение (3,5 В), протекает между электродами через жидкость и управляет коммутацией блока. HRH-5 - уникальна тем, что контрольный ток, протекающий через электроды имеет частоту всего 10 Гц, что обеспечивает сохранность электродов от окисления. Для ограничения нежелательных коммутаций выходных контактов волнением уровня жидкости можно настроить задержку реакции выхода 0.5 - 10 с. HRH-5 позволяет осуществлять коммутацию по двухэлектродной и трехэлектродной схеме. Двухэлектродная схема позволяет ограничить нижний или верхний уровень воды, трехэлектродная схема способна задавать диапазон уровня работы. Например, если использовать блок для защиты скважинного насоса от работы без воды. При двухэлектродной схеме, насос выключится, как только верхний электрод окажется без воды и обратно включится, как только вода поднимется до него. Эта схема применима для скважин с малой вероятностью недостатка воды. Если же скважина малодебитная, то подключение по двухэлектродной схеме приведет к очень частным включениям насоса, что быстро выведет его из строя. В такой ситуации лучше применить трехэлектродную схему, в которой задается диапазон минимального и максимального уровня. Т.е. насос включится только тогда, когда вода дойдет до верхнего электрода максимального уровня, а выключится, после того, как вода опустится до промежуточного электрода минимального уровня. Таким образом, значительно сокращается количество пусков насоса.

В случае работы с погружным насосом, который имеет металлический корпус, клемму COM можно запитать на провод заземления.

Рабочие характеристики

– 3 электрода переключения (MIN-D, MAX-H и COM-C)

– регулируемая чувствительность: 5 - 100kOhm

– установка в положении: опорожнение и наполнение с защитой от ошибочного срабатывания

– 1 выходной перекидной контакт

– задержка от случайного срабатывания 0,5 - 10 с

3,5 V 10 Hz - напряжение на электродах

Коммутируемая мощность реле - 8А

– Степень защиты IP40 (если установлено в корпусе и/или на электрощите с IP40); IP20 - на зажимах.
Настройку чувствительности, как правило, доводят до 6-8kΩ. Для менее проводящих жидкостей, как дождевая вода, чувствительность может быть увеличена до 100 кОм.


Функция опорожнения с использованием 3 электродов:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Функция опорожнения с использованием 3 электродов:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Подключение однофазного насоса с магнитным пускателем

Для данной схемы необходимо перемкнуть перемычкой клеммы D и H




Функция опорожнения с использованием 2 электродов:

Подключение трехфазного насоса с магнитным пускателем

Для данной схемы необходимо перемкнуть перемычкой клеммы D и H.

Когда вода доходит до MAX электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MAX электрода, выходное реле срабатывает и отключает



Функция опорожнения с использованием 2 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов



Аналогичным образом вышеуказанные схемы применяются для защиты погружных насосов от работы без воды.

Вот несколько примеров:

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода,выходное реле срабатывает и отключает насос.



Функция защиты от работы без воды с использованием 2 электродов:

Подключение однофазного насоса с магнитным пускателем.

Ля данной схемы необходимо перемкнуть перемычкой клеммы H и D.

Когда вода доходит до MAX электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MAX электрода, выходное реле срабатывает и отключает



Функция защиты от работы без воды с использованием 3 электродов:

Используется для источников с низким дебитом.

Когда жидкость достигает MAX электрода, выходное реле срабатывает и включается насос.

Когда жидкость доходит до MIN электрода, выходное реле срабатывает и отключает насос.



Функция защиты от работы без воды с использованием 3 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов

Используется для источников с низким дебитом.

Когда вода доходит до MIN электрода, выходное реле срабатывает и включается насос опорожнения.

Когда жидкость находится ниже уровня MIN электрода, выходное реле срабатывает и отключает



Подключение однофазного насоса с магнитным пускателем.



Функция наполнения емкости с использованием 3 электродов:

Подключение однофазного насоса - прямое подключение для маломощных насосов

Когда жидкость доходит до MIN электрода, выходное реле, включает насос.

Когда жидкость доходит до электрода MAX, насос останавливается.



Функция наполнения емкости с использованием 3 электродов:

Подключение трехфазного насоса с магнитным пускателем.

Когда жидкость доходит до MIN электрода, выходное реле, включает насос.

Когда жидкость доходит до электрода MAX, насос останавливается.



Подключение однофазного насоса - прямое подключение для маломощных насосов



Функция наполнения емкости с использованием 2 электродов:

Подключение однофазного насоса с магнитным пускателем.

Когда вода доходит до электрода MAX, насос выключается.

Когда жидкость не касается (уровень ниже) электрода MAX, насос включается.



Функция наполнения емкости с использованием 2 электродов:

Подключение трехфазного насоса с магнитным пускателем.

Когда вода доходит до электрода MAX, насос выключается.

Когда жидкость не касается (уровень ниже) электрода MAX, насос включается.



Выше были представлены наиболее популярные схемы, использующие блок HRH-5.

Но его применение далеко не исчерпывается приведенными примерами.

Комбинируя электроды, полярность реле и их количество, можно найти еще множество примеров применения данному устройству.

Напоследок, хочется привести еще одну схему. Данная схема популярна при водоснабжении из источника имеющего малый дебит.

В таких случаях необходимо защитить насос от работы без воды, минимизировать количество пусков насоса и обеспечить наполнение накопительной емкости, которая обеспечивает бесперебойное снабжение водой потребителей.


Как уже говорилось ранее, контроллер уровня имеет много примеров применения, помимо насосного оборудования. Так, это может быть: управление ТЭН, электроклапанами и прочими устройствами.

Приведем пару, наиболее популярных решений.

В данном примере контроллер используется для дублирующего аварийного управления заполнением накопительной емкости , т.к. запорный поплавковый клапан - удобное решение, но рано или поздно такой клапан выходит из строя. Контроллер, в случае переполнения закроет магистраль и включит звуковую сигнализацию. До исправления неисправности, система будет автоматически поддерживать уровень воды в емкости.

Данная схема аналогична предыдущей, но здесь система выполняет роль защиты помещения от аварийной протечки .

Электронный комплекс управления насосом по уровню HRH-4

Вышеописанный контроллер HRH-5 является наиболее универсальным, точным и надежным способом контроля за уровнем воды. В нем заложены все новейшие разработки в этой области.

Так, контролеер не боится пониженного напряжения т.к. имеет универсальное питание от 24 В до 230 В. Частота контрольного тока снижена до 10 Гц, что препятствует возникновению электрической коррозии электродов. Высокая надежность изготовления обеспечивается качеством от известного производителя.

Рабочее реле контроллера не может обеспечить универсальную коммутацию, поэтому любое мощное оборудование подключается через контактор (магнитный пускатель), который и выполняет коммутацию оборудования по управляющей команде контроллера. Такая схема является наиболее предпочтительной, т.к. не нагружает реле контроллера, что обеспечивает ему высокий ресурс, а контактор специально предназначен для частой коммутации мощных устройств. Трехфазное оборудование возможно подключить только через контактор.

Для удобства пользователя ELKO разработала готовый комплекс в сборе HRH-4.

В этом комплексе установлен вышеописанный контроллер HRH-5 и контактор. Все это закоммутировано и выведенно на клеммы для удобства подключения. Элементы установлены на DIN рейку в корпусе с защитой IP55, что позволяет устанавливать его на улице, подвале, колодце, резервуаре и пр.

Остается только подать напряжение питания, подключить электроды и насос.

Все функции контроллера сохраняются. Возможно использовать, как для контроля за откачкой, так и за наполнением емкости. Подключение однофазных и трехфазных насосов и пр.

Напряжение питания, гальв.изолирован. (AC 50-60 Гц), В AC/DC 230 V AC/DC 24 V

Мощность, VA 7

Допуск напряжения питания -15 %; +10 %

Чувствительность (вход. cопротивл.), кОм 5 - 100

Число контактов, коммутир. 4

Номинальный ток, А 25

Механическая жизненность 3x106

Рабочая температура, °C -20 ... +55

Рабочее положение произвольное

Защита всего комплекса контроля уровня IP 55

Размер, мм 160 x 135 x 83

Вес, кг 0,834

Максимальная мощность подключаемого оборудования:

ТЭН - 16 кВт

Насосы 1-фазные - 2,2 кВт

Насосы 3-фазные - 4 кВт

Схемы подключения аналогичны схемам с HRH-5. Но для понятности следует привести пару примеров.

Пример использования для защиты скважинного однофазного насоса от работы без воды и контроля уровня при низком дебите.

В качестве общего электрода используется корпус насоса с подключением через заземление.



Пример подключения трехфазного насоса

Электронный блок управления насосом по уровню СКЛ 6

Блок СКЛ-6, аналогичен блоку HRH-5 и так же использует кондуктометрический метод определения наличия жидкости.

Блок СКЛ-6 способен управлять, как насосами на опорожнение, так и насосами, работающими на наполнение накопительной емкости.

Высочайшая надежность и точность управления по уровню, позволяет применять данное устройство не только в бытовых целях, но и в промышленности, для управления устройствами, требующих высокой надежности срабатывания.

Блок СКЛ-6 имеет модульную конструкцию с монтажом в распределительный шкаф на DIN рейку.

Конструктивно, блок состоит из двух независимых устройств регулирования уровня и может применяться, как для управления двумя насосами, так и для управления одним насосом по сигналу из двух емкостей или источников.

СКЛ-6 управляет оборудованием через два трехполюсных реле.

Реле рассчитано на малую мощность, поэтому насосы подключаются к нему исключительно через магнитный пускатель.

Принцип работы блока СКЛ-6 основан на электрической проводимости большинства видов жидкостей (вода, молоко и пр.). В жидкость помещаются электроды (не входят в комплект поставки) из нержавеющей стали. Электрический ток, имеющий низкое напряжение (10 В), протекает между электродами через жидкость и управляет коммутацией блока.

Во всех схемах, нижний электрод COM опускается как можно ниже. Если корпус емкости металлический, то вместо электрода клемму COM можно запитать на корпус емкости.

Примеры применения:

Установка уровня работы для погружного насоса в малодебитном источнике с одновременным регулированием уровня в накопительном баке.

Поддержание уровня воды в бассейне с наполнением в случае недостатка воды и откачиванием при излишке.

Включение резервного насоса при откачивании стоков, в случае, когда основной насос не справляется.

Другие схожие схемы

Рабочие характеристики

Напряжение питания - ~ 220В, 50-60 Гц

Принцип определения наличия воды - кондуктометрический

Гальваническая развязка датчиков - через трансформатор с электрической прочностью изоляции 6 кВ

Количество независимых каналов - 2

Количество датчиков каждого канала - 2

Максимальный ток нагрузки встроенных реле - 5 А

Выходной управляющий сигнал - переключающийся контакт


Примеры:

Вариант предыдущей схемы водоснабжения из источника, имеющего низкий дебит, но уже с применением блока СКЛ-6, который заменил два блока HRH-5.


Поддержание уровня воды в бассейне.

В данном случае, если уровень воды ниже определенного уровня, включается подающий насос (если вода подается из магистрального трубопровода, то насос можно заменить электромагнитным клапаном) и бассейн пополняется водой. Если уровень воды недопустимо повышается, включается откачивающий насос.


Как уже говорилось выше, данный блок можно использовать и для управления парой дренажных насосов. Схематически, рассматривать данный пример не будем, т.к. для этой цели предпочтительно применение приборов, которые будут рассмотрены далее.

Блок СКЛ-12 по принципу работы и устройству аналогичен выше рассмотренным блокам, работающим по принципу электрической проводимости жидкости.

Основное отличие данного блока заключается в его узкой специализации.

Блок СКЛ-12 предназначен для управление насосами откачки стоков из канализационных, дождевых и прочих колодцев, котлованов, водосборных приямков и прочих емкостей.

СКЛ-12 управляет двумя насосами - основным и резервным. Как правило, данная схема применяется в местах, где недопустимо переполнение колодцев.

При работе опрашиваются три датчика уровня и, в зависимости от ситуации, включаются один или два насоса. При этом, при повышении уровня жидкости, порядок их включения меняется - первым включается то один, то другой насос. Это приводит к более равномерному их износу и экономии ресурса.

Т.е. если при первом заполнении бака сначала включится первый насос, а затем второй, то при следующем заполнении, первым включится второй насос, а только затем – первый.

Датчики уровней устанавливаются в соответствующих местах в накопительном баке или приямке.

Общий провод либо присоединяется к корпусу бака (если он металлический), либо устанавливается ниже нижнего датчика.

Насосы подключаются к сети через нормально разомкнутые контакты соответствующих реле.

После включения прибор сразу готов к работе и, в зависимости от состояния датчиков, включает/выключает соответствующие насосы.

Прибор снабжен системой контроля исправности датчика первого уровня. Если система обнаруживает, что датчики второго и/или третьего уровня погружены в воду, а первого – нет, то отключаются оба реле и индикаторы второго и третьего уровней, а индикатор первого уровня начинает мигать.

Без воды обойтись невозможно, а если у вас есть свое хозяйство или вы проживаете в частном доме то вам не обойтись без простой схемы управления насосом. Управление насосом должна работать хотя бы в двух режимах: дренаж – выкачивание воды из емкости, скважины или колодца и водоподъем - в режиме наполнения емкости. В случае наполнения водного резервуара возможен перелив, а в случае выкачивания воды из него насос может попасть под сухой ход и сгореть. Для избегания этих проблем и предназначена любая схема управления насосом.

В разработке применены два датчика: короткий стальной прут контролирует максимально разрешенный уровень воды и длинный металлический прут датчик минимального уровня. Сама резервуар металлический и подключен к минусовой шине. Если емкость сделана из диэлектрического материала тогда допускается применять дополнительный стальной прут во всю длину емкости. В случае контакта с водой длинным датчиком и с коротким датчиком, логический уровень на выводах микросхемы К561ЛЕ5 меняется с высокого на низкий, изменяя режим работы насоса.


Управление насосом схема на К561ЛЕ5

В случае если уровень воды ниже обоих датчиков, на десятом выводе микросхемы логический ноль. При плавном повышении уровня воды даже в случае, если вода будет контактировать с длинным датчиком, все равно будет логический ноль. Как только уровень воды дойдет до короткого датчика, появится логическая единица и транзистор включит реле управления насосом, который начнет откачивает воду из емкости.

Когда, уровень воды упадет, и короткий датчик не будет соприкасаться с водой, то на выводе 10 все равно будет логическая единица и насос продолжает работать. Но если уровень воды опустится ниже длинного датчика, то появится логический ноль и насос прекратит свою работу. Тумблер S1 используется для обратного действия.

В этой схеме Датчик уровня воды в резервуаре собран так, что контакты SF1 замыкаются, если уровень воды окажется ниже минимального, a геркона SF2 - замыкаются только тогда, когда вода достигнет максимального уровня.

Эту радиолюбительскую разработку я использовал на даче, для контроля и поддержания определенное количества уровня жидкости в поливальном баке.

Любой автомат подачи воды начинается с датчика. Чаще всего используют контактные датчики, погружаемые в воду и измеряющие сопротивление воды. Мне кажется что такой способ имеет серьезные недостатки. Вода постоянно находится под током. Да, этот ток мизерный, но каким бы он не был, он приводит к электрохимическим процессам в воде. Это не только усиливает коррозию металлического резервуара, контактов датчика, но и увеличивает в воде содержание солей металлов, что может быть неполезно для организма, конечно, кроме случая использования серебряных контактов и емкости из пищевой пластмассы. В таком случае добавление в воду ионов серебра может оказать и некоторую пользу организму. Но все же предпочтительно отказаться от Датчик уровня воды, используемый в этой разработке, представляет собой пластмассовую трубу, опущенную вертикально в бак с водой. Внутри трубы свободно перемещается поплавок, вырезанный из пенопласта, на котором закреплен магнит, взятый от старого динамика. Магнит расположен на поверхности поплавка и с водой не контактирует. Чтобы поплавок не выпадал из трубы при низком уровне воды нижнюю часть трубы перекрывают перемычкой, сделанной из корпуса старой шариковой авторучки (в стенках трубы напротив друг друга сверлят отверстия и с некоторым трением вставляют туда авторучку).


Управление насосом схема автомат

Снаружи на трубе закрепляют два геркона, место их установки подбирают экспериментально исходя из особенностей конкретного бака. Один геркон должен замыкаться под действием постоянного магнита поплавка при опустошении бака до минимального уровня, при котором нужно включать электронасос для пополнения бака. Второй геркон устанавливается в таком месте трубы, где он замыкается под действием магнита поплавка при максимальном заполнении бака, когда нансос нужно выключить. Для повышения надежности можно в месте установке каждого геркона установить несколько герконов, расположив их по кругу трубы и подключив параллельно друг другу. Дело в том, что в процессе движения датчик может поворачиваться, а геркон более чувствителен к перпендикулярному воздействию на него магнитного поля, поэтому при некотором положении магнита он может и не срабатывать.

Еще нужно учесть что расстояние между герконом (герконами) нижнего и верхнего уровня на трубе должно быть значительным чтобы ни в каком положении поплавка магнитное поле не могло приводить к замыканию обоих герконов (обоих групп герконов), так как одновременное замыкание герконов нижнего и верхнего уровня приводит к замыканию в цепи питания схемы. Герконы и идущие к ним провода необходимо тщательно изолировать от воды используя герметик.

Схема электронной части показана на рисунке выше. На элементах D1.1 и D1.2 построен триггер Шмитта с относительно небольшим входным сопротивлением (зависит от величины R1). Небольшое входное сопротивление приводит к минимальному уровню наводок на провод, идущий от геркона и снижает склонность схемы к повреждению статическим электричеством. Как известно, триггер Шмитта принимает состояние соответствующее состоянию на его входе. Входом являются соединенные вместе выводы элемента D1.1. Если на этот вход подать логическую единицу, то на выходе элемента D1.2 так же будет логическая единица, но если после этого вход триггера отключить, то он так и останется в единичном состояния за счет того, что на его вход будет поступать логическая единица с его же выхода через резистор R1. Аналогично и с установкой в нулевое состояние.

Геркон SG1 установлен в нижней части трубы и отвечает за включение насоса для наполнения бака. Геркон SG2 располагается в верхней части трубы и отвечает за выключение насоса. Один или другой герконы замыкаются только в верхнем и нижнем положении уровня воды. В среднем положении магнит не действует на них и они не замкнуты. Предположим схему включили, а уровень воды был средним. Триггер Шмитта при включении питания может установиться произвольно в любое положение. Если он установился в положение единицы, то включается насос и накачивает воду в бак до тех пор, пока не замкнется геркон SG2. Если триггер Шмитта установился в нулевое положение, то насос не включается до тех пор пока уровень воды не опустится до момента замыкания SG1. Предположим, уровень воды в баке минимальный. Тогда замыкается геркон SG1 и через него на вход триггера Шмитта поступает напряжение высокого уровня. На выходе D1.2 устанавливается логическая единица.

Соответственно, единица будет и на выходе D1.4. Транзистор VT3 открывается и подает питание на реле К1, если переключатель S1 находится в положении «АВТ», то это приведет к включению электронасоса. В таком состоянии схема будет находится до тех пор, пока поплавок не поднимется по трубе на столько, что его магнит замкнет геркон SG2. Теперь вход триггера Шмитта соединен с общим минусом, то есть, на нем низкий уровень. Соответственно низкий уровень будет и на выходе D1.2 и D1.4. Транзистор VT3 закрывается и если S1 в положении «АВТ» его контакты выключают электронасос. Светодиоды HL1 и HL2 служат для индикации состояния системы. Если насос включен горит HL1, а если выключен - HL2. По состоянию светодиодов можно следить за степенью заполнения резервуара и работой электронасоса. Переключатель S1 служит для перехода на ручное или автоматические управление. S1 -это тумблер с нейтральным положением. В нейтральном положении («ВЫК») электронасос выключен независимо от состояния датчиков.

В положении «ВК» насос включен независимо от состояния датчиков. А в положении «АВТ» происходит автоматическое управление насосом. Положения «ВК» и «ВЫК» нужны при проведении техобслуживания или ремонта водопровода, а так же, для ручного управления при неисправности датчиков. Микросхема К561ЛЕ5 или К561ЛА7 - логика работы входов инверторов не имеет значения, входы соединены вместе. Можно использовать любую микросхему серии К561, К176 или CD с числом инверторов не менее четырех. Например, К176ЛЕ5, К176ЛА7, К561ЛН2. Электромагнитное реле К1 с обмоткой на 12V и контактами на 230V при токе до ЗА. Можно использовать любое аналогичное реле или выбрать в зависимости от мощности насоса. Если мощность насоса не более 200W можно использовать реле КУЦ-1 от старого телевизора.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные