Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Явление резонанса колебательных систем известно всем еще из школьного курса
по физике. Возьмем для примера два камертона. Возбудим один камертон на частоте в 500 Гц и поднесем его к другому камертону с такой же собственной частотой в 500 Гц. Что же произойдет? Он – зазвучит. С таким же успехом резонанс взаимодействия, может быть, применим и ко всему живому на Земле – это человек, животное, растительный мир.

Резона́нс (фр. resonance, от лат. resono - откликаюсь) - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи явления резонанса можно выделить и/или усилить даже весьма слабые периодические колебания. Резонанс - явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность. Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

(Материал из Википедии - свободной энциклопедии)

Резонанс — это основной способ передачи эмоций от человека к человеку.

Так описан резонанс в Википедии. Зачем эмпату или экстрасенсу знать о резонансе? Для экстрасенса, работающего с потоками энергии, чувствами, эмоциями, это явление можно использовать как инструмент. Резонанс — это физическое явление, и другие биоэнергетические проявления как, к примеру, на звук. Звук — это тоже своего рода поле, вернее его вибрация, она заполняет собой всё вокруг, куда сможет проникнуть. Чувства и эмоции — это обычное поле и подчиняются физическим законам.

К примеру, чтобы усилить чувство-эмоцию достаточно найти ещё одного человека с подобной эмоцией или возбудить её в другом человеке. Чем больше людей находятся вместе в одной эмоции, тем она становится сильней . Если наращивать количество людей с одной эмоцией, то она, в какой то момент поглотит личности людей, и люди теряют над собой контроль . Толпа болельщиков на стадионе, митинги, просто собрания единомышленников, религиозные служения — вот несколько примеров эффекта резонанса в эмоциональном плане.

Чем опасно телевидение в этом плане.

Выше я писал:- чем больше людей находятся вместе в одной эмоции, тем она становится сильней. А теперь представьте, идёт какая нибудь передача, или художественный фильм не оставляющие людей равнодушными. Это та же самая групповая медитация , то-есть имеет огромную силу влияющую на общее сознание людей города, страны, планеты. Всё зависит от того, сколько людей смотрит данный продукт. Если по телевидению осуждают кого то или что то не важно заслуженно или нет, и все телезрители испытывают негодование, то тому о ком идёт речь не будет ни чего хорошего.

Но если к примеру идёт художественный фильм, там чаще всего персонажи вымышленные, то-есть особо расстраиваться нечего, вреда ни кому нет. Но не так всё просто. Если человеком переживаются негативные эмоции, то он разрушает сам себя, а представьте что будет если учесть резонанс от всех телезрителей в этот момент. Для подобных вещей расстояние не помеха. Это получается групповая медитация на самоуничтожение. По этому если смотреть по телевидению передачи или фильмы, то только вызывающие позитив. Но и тут не всё просто, та энергия которая выделяется человеком, она не остаётся ему лично, она забирается определёнными эгрегорами.

Проведите эксперимент, или просто вспомните, если что то подобное в жизни с вами уже случалось. Посмотрите фильм по одному из центральных каналов, в пиковое время когда много людей смотрит телевизор а через какое то время посмотрите тот же фильм в интернете или просто с диска, так сказать в одиночестве и обратите внимание что эмоции когда вы смотрите в одиночестве с DVD гораздо мене яркие, чем при просмотре по центральному каналу телевидения когда одновременно с вами смотрят этот фильм тысячи человек.

Проявления резонанса в бытовом плане.

Если вы думаете, что в жизни вам может не встретиться резонанс, потому что вы не болельщик и вообще избегаете сборищ людей, вы ошибаетесь.

Несколько примеров.

  • Дружба. Друг, подруга — это резонанс уровня сознаний, интересов.
  • Любовь. Влюблённость — резонанс чувств, внешнего и внутреннего соответствия вашим идеалам обеих участников.
  • Влюблённость односторонняя безответная. Это тоже резонанс, но резонанс уже не с человеком, а с образом человека, созданным собственным умом . А объект влюблённости просто похож на образ, живущий в подсознании влюблённого.
  • Обсуждение. Резонанс совпавших взглядов, мнений на событие, вещь, человека.
  • Сочувствие, сострадание. Со-настройка с человеком, осознанное вхождение с человеком в резонанс . Это действие происходит намеренно или по привычке, на автомате, если на ваш взгляд эти проявления являются правильными.
  • Обида, злость. Это сильные эмоциональные взрывы. Большинство людей легко входят в эти эмоции, практически моментально, так как они для нашего низко-вибрационного мира являются обычными, естественными.
  • Страх. Групповой страх — это также любимое занятие многих людей. Серьёзность — это скрытое проявление страха, эта игра одна из любимых людьми.

У вас есть выбор — не резонировать.

Не резонировать — значит оставаться нейтральным по отношению к эмоции, мировоззрению, убеждению, разделяемой группой людей. Человек, понимающий и узнающий явление резонанса, может усилием воли или, используя выбор, не участвовать в резонансе. Для экстрасенсов и особенно для эмпатов это очень важное понимание. Да, усиленная эмоция, во много раз будет ослепительней, это неприятно, но, осознавая, что вы можете не резонировать, можно не терять разум. Просто относиться к резонирующим людям как к опьяненным. Сами понимаете, что опьяненный человек не совсем адекватен , нужно просто подождать, когда человек протрезвеет, и тогда он станет нормальным.

В энергетических практиках часто используют резонанс в групповых медитациях. Да, групповая медитация дает значительно больший эффект, чем медитация в одиночестве , при условии, что все участники примерно одного уровня и духовного настроя. Но нужно не забывать, что любое эмоциональное, энергетическое излучение, особенно сильное, резонансное включает закон кармического уравновешивания. Это может выглядеть как эмоциональный взрыв, чаще проявляется в негативных эмоциях у большинства участников групповой медитации. Обычно это происходит на следующий день, хотя может наступить и через несколько часов. Некоторые это явление называют чисткой. Но это всего-лишь плата за искажения, внесенные в пространство мироздания во время медитации. Чистка проходила во время медитации, за счёт усиления энергетических потоков.

Явление резонанса

Явление, при котором наблюдается резкое возрастание амплитуды вынужденных колебаний, называется резонансом.

Резонансная частота определяется из условия максимума для амплитуды вынужденных колебаний:

Тогда, подставив это значение в выражение для амплитуды, получим:

При отсутствии сопротивления среды амплитуда колебаний при резонансе обращалась бы в бесконечность; резонансная частота при тех же условиях (b = 0) совпадает с собственной частотой колебаний.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (или, что то же самое, от частоты колебаний) можно представить графически (рис. 2). Отдельные кривые соответствуют различным значениям “b”. Чем меньше “b”, тем выше и правее лежит максимум данной кривой (см. выражение для w рез.). При очень большом затухании резонанс не наблюдается - с увеличением частоты амплитуда вынужденных колебаний монотонно убывает (нижняя кривая на рис. 2). Кингсеп А.С, Локшин Г.Р., Ольхов О.А. Основы физики. Курс общей физики: Учебн. В 2 т. Т. 1. Механика, электричество и магнетизм, колебания и волны, волновая оптика -- М.: ФИЗИАТЛИТ,2001. Ї 356 с.

Рис 2.

Совокупность представленных графиков, соответствующих различным значениям b, называется резонансными кривыми. Замечания по поводу резонансных кривых: при стремлении w®0 все кривые приходят к одному, отличному от нуля значению, равному. Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы F 0 . При w®Ґ все кривые асимптотически стремятся к нулю, т.к. при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместится из положения равновесия. Чем меньше b, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» максимум.

Однопараметрическое семейство резонансных кривых, может быть построено, особенно легко с помощью компьютера. Результат такого построения показан на Рис. 3. Переход к «обычным» единицам измерения может быть проведен элементарным изменением масштаба осей координат.


Рис. 3.

Частота вынуждающей силы, при которой амплитуда вынужденных колебаний максимальна, также зависит от коэффициента затухания, слегка убывая с ростом последнего. Наконец, подчеркнем, что увеличение коэффициента затухания приводит к существенному увеличению ширины резонансной кривой.

Возникающий сдвиг фаз между колебаниями точки и вынуждающей силой также зависит от частоты колебаний и коэффициента их затухания. Более подробно с ролью этого сдвига фаз мы познакомимся при рассмотрении преобразования энергии в процессе вынужденных колебаний.

Вынужденные колебания представляют в некоторых случаях опасность для нормальной работы машин и целости сооружений. Даже незначительная по величине возмущающая сила, действующая периодически на конструкцию, может при определенных условиях оказаться более опасной, чем постоянная сила, которая во много десятков раз больше ее по величине.

Действие колебаний проявляется зачастую не в непосредственной близости от места действия возмущающих сил, как это можно ожидать, а в местах, удаленных от него и даже в системе, непосредственно не связанной с конструкцией, подверженной колебаниям. Так, например. работа машины вызывает колебания как здания, в котором машина помещается, так и здания, расположенного рядом; работа дизеля водокачки может вызвать колебания близко расположенного железнодорожного моста и т.п.

Причиной этих своеобразных явлений служит способность всякого сооружения совершать упругие колебания определенной частоты. Сооружение можно уподобить музыкальному инструменту, способному издавать звуки определенной высоты и отзываться на эти звуки, если они раздаются извне. При действии на сооружение периодической нагрузки с определенной частотой особенно значительные колебания будут возникать в той части сооружения, которая имеет собственную частоту, близкую к этой частоте или кратную ей. Таким образом, в этой части конструкции, даже если она удалена от места приложения нагрузки, может возникнуть явление резонанса. колебание резонанс техника успокоитель

Это явление наступает тогда, когда частота возмущающей силы равна частоте собственных колебаний системы.

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты вынуждающей силы с собственной частотой системы, способной совершать колебания, называется резонансом.

Явление резонанса важно потому, что оно проявляется достаточно часто. С резонансом сталкивался каждый, кто раскачивал, например, ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко. Наибольшего результата, таким образом, можно достичь лишь тогда, когда время между отдельными толчками будет совпадать с периодом колебаний качелей, т.е. выполняется условие резонанса.

С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота колебаний этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий. Так, например, собственная частота вибраций корпуса корабля или крыльев самолета должна сильно отличаться от частоты колебаний, которые могут возбуждаться при вращении гребного винта корабля или пропеллера самолета. В противном случае возникают вибрации большой амплитуды, которые могут привести к разрушению обшивки и катастрофе. Известны случаи, когда обрушивались мосты при прохождении по ним марширующих колонн солдат. Это происходило потому, что собственная частота колебаний моста оказывалась близкой к частоте, с которой шагала колонна.

Вместе с тем явление резонанса часто оказывается весьма полезным. Благодаря резонансу, например, стало возможным использование ультразвуковых колебаний, т.е. звуковых колебаний большой частоты, в медицине: для разрушения камней, которые иногда образуются в организме человека, для диагностики различных заболеваний. По той же причине ультразвуковые колебания могут убивать некоторые микроорганизмы, в том числе и болезнетворные.

Явление резонанса в электрических цепях при совпадении их собственных частот с частотами электромагнитных колебаний радиоволн позволяет нам при помощи своих приемников принимать теле- и радиопередачи. Это почти единственный метод, позволяющий отделить сигналы одной (нужной) радиостанции от сигналов всех остальных (мешающих) станций. Резонансом при совпадении частоты электромагнитных колебаний с собственными частотами атомов можно объяснить поглощение света веществом. А это поглощение лежит в основе поглощения тепла от Солнца, в основе нашего зрения и даже в основе работы СВЧ-печи.

Однако в слове «резонанс», от латинского resono -- откликаюсь, кроется ключ к установлению подобия между весьма разнородными процессами, когда на периодическое внешнее воздействие нечто, способное колебаться, отвечает увеличением размаха собственных колебаний. Иначе говоря, когда малые причины способны привести к большим последствиям.

Выявив эту особенность, вы легко продолжите список примеров и, как это часто бывает, обнаружите как полезные, так и вредные проявления резонанса. Универсальность в описании колебательных процессов, в том числе и резонанса, послужила ученым путеводной звездой при освоении неизведанных ранее областей, например мира микроявлений. А это привело к созданию таких мощных методов исследования строения вещества, как электронный парамагнитный резонанс и ядерный магнитный резонанс. Еще в античном театре для усиления голоса актера использовались большие глиняные или бронзовые сосуды (прообразы резонаторов Гельмгольца), представляющие собой полости шарообразной или бутылочной формы с узким длинным горлом.

Издревле звонари на колокольнях бессознательно использовали явление резонанса, раскачивая тяжелый колокол незначительными, но ритмичными толчками. А в Кёльнском соборе в свое время был подвешен колокол, качавшийся в фазе со своим языком, что не позволяло извлечь из него никаких звуков. В начале 30-х годов XX века практически все авиаторы столкнулись с загадочным явлением, названным флаттером, когда самолеты в спокойном горизонтальном полете неожиданно начинали вибрировать с такой силой, что разваливались в воздухе на куски. Как выяснилось, флаттер порождался причинами, подобными тем, что вызвал изменения, а увеличение частоты, связанное с ростом скорости, приводит к повышению тона.

Изоляция кабелей, испытанная в лаборатории с помощью постоянного напряжения, порой пробивалась при работе с переменным током. Оказалось, что это происходит при совпадении периода пульсаций тока с периодом собственных электрических колебаний кабеля, что приводило к нарастанию напряжения, многократно превышающего пробойное. Даже в гигантских современных циклотронах -- ускорителях заряженных частиц -- используется простой принцип, заключающийся в обеспечении резонанса между движением частицы по спиральной траектории и переменным электрическим полем, периодически «подхлестывающим» частицу.

При резонансе энергия поступает в систему согласованно с колебаниями в ней, постоянно увеличивая их амплитуду. В стационарном режиме большая амплитуда колебаний поддерживается малыми поступлениями энергии в систему, восполняющими потери энергии колебаний (нагрев проводников, преодоление сил сопротивления, потери на излучение электромагнитных и механических волн) за один период. В системе при резонансе созданы наиболее благоприятные условия для реализации свойственных системе свободных незатухающих колебаний, и поэтому амплитуда колебаний резко возрастает.

Рассмотрим некоторые примеры проявления резонанса в природе.

Пример 1 . Солдаты проходят по мосту строевым шагом, частота ударов ног о поверхность моста может совпасть с собственной частотой колебаний моста как колебательной системы, наступает явление резонанса, при котором амплитуда колебаний моста постепенно нарастает и при больших числовых значениях может привести к его разрушению.

Пример 2 . Вентилятор плохо прикреплен к потолку и при своем вращении он создает толчки на потолок, частота которых может совпасть с собственной частотой колебаний комнаты (потолка) как колебательной системы, амплитуда колебаний потолка нарастает и может привести к его обрушению.

Пример 3 . Приборы на кораблях максимально утяжеляют (делают тяжелыми подставки) и подвешивают на мягких пружинах (коэффициент жесткости для них будет малым). В этом случае частота качки корабля будет больше собственной частоты колебаний (
) приборов на пружинах и поэтому резонанса не наступает.

Пример 4 . В радиоприемниках на основе явления резонанса можно выделить нужный сигнал из большого числа сигналов разных радиостанций, поступающих на его приемную антенну (рис. 5.23,а). Пусть на вход радиоприемника поступают сигналы малой амплитуды с различной несущей частотой

Для выделения сигнала с несущей частотой , необходимо добиться равенства частотысобственных свободных незатухающих колебаний приемного контура и частоты(=). Тогда за счет явления резонанса амплитуда сигнала с частотойна выходе конденсатора резко возрастает, а амплитуды остальных сигналов останутся прежними (рис. 5.23,б показана сплошной линией резонансная кривая, максимум которой приходится на частоту)

и тем самым происходит выделение сигнала с несущей частотой . Изменяя электроемкость конденсатора, можно настроить приемный контур антенны на несущую частоту(на рис. 5.22,б пик резонансной кривой смещается на частоту).

    1. Нелинейные системы. Автоколебания

1. Нелинейные системы . Под нелинейными системами понимают такие колебательные системы, свойства которых зависят от происходящих в них процессов. В таких системах существуют нелинейные связи, например, между: 1) силой упругости и смещениемгруза относительно положения равновесия. Это приводит к нарушению закона Гука и к зависимости коэффициента к жесткости системы от смещения , что изменяет собственную частотуколебаний системы; 2) электрическими зарядами конденсатора и создаваемой ими напряженностью поля (сегнетоэлектрик между пластинами конденсатора под действием электрического поля изменяет свою диэлектрическую проницаемость и тем самым приводит к изменению электроемкости конденсатора в зависимости от подаваемого в контур напряжения, т.е. к изменению собственной частоты колебаний контура) и т.д.

Все физические системы являются нелинейными системами. При малых амплитудах колебаний (при малых отклонениях от положения равновесия) физические системы можно считать линейными, колебания в них описываются одинаковыми дифференциальными уравнениями, что и позволяет построить общую теорию колебаний.

Нелинейные эффекты в физических системах обычно проявляются при увеличении амплитуды колебаний – это приводит к тому, что собственные колебания системы (осциллятора) уже не будут гармоническими, а их частота будет зависеть от амплитуды колебаний. Уравнения движения для них являются нелинейными, а такие системы называют ангармоническими осцилляторами(см. § 5.5).

Действительно, например, для малых отклонений потенциального поля от параболического вида () дифференциальное уравнение колебаний будет иметь вид

,

Из записанного дифференциального уравнения видно, что коэффициент жесткости зависит от амплитуды колебаний, что приводит к зависимости угловой частоты свободных незатухающих колебаний системы от амплитуды колебаний
.

Для больших отклонений от линейного поведения зависимость
усложняется, и поэтому усложняются уравнения описывающие колебания в системе.

Для нелинейных систем, в отличие от линейных, нарушается принцип суперпозиции , согласно которому результирующий эффект от сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга.

Изменение в нелинейных системах формы гармонического внешнего воздействия и нарушение принципа суперпозиции позволяют осуществлять с помощью таких систем генерирование и преобразование частоты электромагнитных колебаний – выпрямление, умножение частоты, модуляцию колебаний и т.д.

Резонанс в такой нелинейной системе будет отличаться тем, что в ходе раскачки осциллятора внешней силой величина расстройки (
) будет изменяться, так как частота будет зависеть от амплитуды колебаний.

2.Автоколебательные системы . Рассмотрим подробнее один из примеров нелинейных систем - автоколебательные системы.

Преимуществом использования резонансных явлений является их экономичность и большая амплитуда колебаний. Недостатком является нестабильность работы системы, связанная с необходимостью с большой степенью точности поддерживать условие резонанса (
), так как любые отклонения частоты внешнего воздействия от резонансной частоты при узкой резонансной кривой резко изменяют амплитуду колебаний в системе (рис. 5.17,а, б).

Для того чтобы избежать таких нежелательных явлений, можно заставить саму систему поддерживать это резонансное условие, такая система является автоколебательной системой. Автоколебательная система относится к группе нелинейных колебательных систем, в которых происходит компенсация диссипативных потерь за счет притока энергии от внешнего постоянного источника. При этом система сама регулирует подвод энергии в систему, подавая ее в нужный момент времени в нужном количестве.

Автоколебательная система состоит из колебательной системы, источника энергии и клапана - устройства, которое регулирует подвод энергии в систему. Работой клапана управляет сама система с помощью обратной связи (рис.5.24,а)

В качестве примера автоколебательной системы можно привести систему, состоящую из груза, прикрепленного к двум пружинам и совершающего колебания на металлическом стержне (рис. 5.24,б). Источник постоянного тока с помощью электромагнита за каждый период колебаний совершает работу по увеличению кинетической энергии груза, восполняя потери энергии колебаний на преодоление сил сопротивления.

Это происходит следующим образом. При своем движении металлическая пластина, прикрепленная к грузу, касается контакта-прерывателя (он играет роль клапана), электрическая цепь замыкается и электромагнит притягивает к себе пластину, сообщая при этом дополнительную скорость грузу. Таким образом, в системе возникают незатухающие колебания на частоте
с большой амплитудой, которую можно регулировать, меняя положение контакта прерывателя.

Примерами автоколебательных систем могут служить духовые и смычковые инструменты, колебания голосовых связок при разговоре, механические часы. Примером автоколебательной системы в природе является ядерный реактор, который проработал в течение 500 тысяч лет на урановом руднике в Африке 2,5 миллиарда лет тому назад. Для его работы необходимы были достаточное количество урана-235, который делится под действием медленных нейтронов, и замедлитель нейтронов – вода. В определенный момент времени вода скопилась в достаточном количестве и реактор заработал. Его работу поддерживала цепочка процессов, указанных на рис. 5.25:

Такая автоколебательная система работала до тех пор, пока не выгорело ядерное топливо. Здесь источником энергии является деление ядер U-235, клапаном служит изменение температуры воды, а колебательной системой является вода, уровень которой совершает колебания.

Слышали ли вы о том, что отряд солдат, переходя мост, должен перестать маршировать? Солдаты, идущие до этого в ногу, перестают это делать и начинают идти свободным шагом.

Такой приказ отдается командирами вовсе не с целью дать солдатам возможность полюбоваться местными красотами. Это делается для того, чтобы солдаты не разрушили мост. Какая тут связь? Очень простая. Чтобы это понять, надо ознакомиться с явлением резонанса.

Что такое явление резонанса: частота колебаний

Чтобы проще понять, что такое резонанс, вспомните такую нехитрую и приятную забаву, как катание на подвесных качелях. Один человек сидит на них, а второй раскачивает.

И прикладывая совсем небольшие силы, даже ребенок может очень сильно раскачать взрослого. Как он этого добивается? Частота его раскачиваний совпадает с частотой качающегося, возникает резонанс, и амплитуда раскачиваний сильно возрастает. Как-то так. Но обо всем по порядку.

Частота колебаний это количество колебаний за одну секунду. Измеряется она при этом не в разах, а в герцах (1 Гц). То есть, частота колебаний в 50 герц означает, что тело совершает 50 колебаний в секунду.

В случае вынужденных колебаний всегда есть самоколеблющееся (или в нашем случае качающееся) тело и вынуждающая сила. Так вот эта сторонняя сила действует с определенной частотой на тело.

И если его частота будет сильно отличаться от частоты колебаний самого тела, то сторонняя сила будет слабо помогать телу колебаться или, говоря научно, слабо усиливать его колебания.

Например, если пытаться раскачать человека на качелях, толкая его в момент, когда он летит на вас, вы можете отбить себе руки, скинуть человека, но вряд ли сильно его раскачаете.

А вот если раскачивать его, толкая в направлении движения, то нужно совсем немного усилий, чтобы добиться результата. Вот это и есть совпадение частоты или резонанс колебаний . При этом сильно возрастает их амплитуда.

Примеры резонансных колебаний: польза и вред

Так же и при катании на другом варианте качелей в виде доски на подставке проще и эффективнее отталкиваться ногами от земли, когда ваша сторона качелей уже поднимается, а не когда она опускается.

По этой же причине застрявшую в ямке машину постепенно раскачивают и толкают вперед в моменты, когда она сама двигается вперед. Так значительно повышают ее инерцию, усиливая амплитуду колебаний.

Можно приводить множество подобных примеров, которые говорят о том, что мы на практике очень часто применяем явление резонанса, только делаем мы это интуитивно, не догадываясь, что применяем правила физики.

Выше говорилось о полезности явления резонанса. Однако, резонанс может и вредить. Иногда возникающее увеличение амплитуды колебаний может быть очень вредным. В частности, мы говорили о роте солдат на мосту.

Так вот были несколько случаев в истории, когда под шагами солдат реально разрушались и падали в воду мосты. Последний из них произошел около ста лет назад в Петербурге. В таких случаях частота ударов солдатских сапог совпадала с частотой колебаний моста, и мост рушился.

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора. Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров. Цель статьи — объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Простые примеры резонанса из жизни

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас — это обычные качели на детской площадке.

Резонанс качелей

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Звуковой акустический резонанс при пении в ванной

Каждый из поющих в ванной комнате из кафеля наверняка замечал как изменяется звук. Звуковые волны отражаясь о кафель в замкнутом пространстве ванной становятся громче и продолжительнее. Но этому воздействию подвержены не все ноты песни вокалиста, а лишь те, которые резонируют в один такт со звуковой резонансной частотой воздуха.

Для каждого из вышеперечисленного случая возникновения резонанса существует внешняя возбуждающая энергия: в случае с качелями элементарный толчок рукой, совпадающий с фазой колебания качели, и в случае с акустическим эффектом в ванной — голос человека, отдельные частоты которого совпадали с определенными частотами воздуха.

Звуковой резонанс бокала — опыт в домашних условиях

Данный опыт можно провести в домашних условиях. Для него необходим хрустальный бокал и закрытое помещение без посторонних шумов для чуткого восприятия аккустического эффекта. Смоченный водой палец передвигаем по краю бокала с «рваными» периодическими ускорениями. В процессе подобных движений вы можете наблюдать возникновение звенящего звука. Данный эффект возникает вследствие передачи энергии движения, частота колебание которой совпадает с собственными частотой колебания бокала.

Разрушение мостов вследствие резонанса — случай с Такомским мостом

Все служившие в армии помнят, как при прохождении строем по мосту от командира звучала команда: «Отставить в ногу!». Почему же нельзя было проходить строем по мосту «в ногу»? Оказывается, при прохождении строем по мосту с одновременным поднятием выпрямленной ноги до уровня колена военнослужащие опускают плоскость подошвы в один такт с усилием, которое сопровождается характерным шлепком.

Шаг военнослужащих сливается в один единый такт, создавая скачкообразную внешнюю прикладываемую энергию для моста с определенной величиной колебаний. В случае если собственная частота колебаний моста совпадет с колебанием шага солдат «в ногу» — произойдет резонанс, энергия которого может привести к разрушительным воздействиям конструкции моста.

Хотя случаи полного разрушения моста и не зафиксированы при прохождении солдат «в ногу», но известнее случай разрушения Такомского моста через пролив Такома-Нэрроуз в штате Вашингтон США в 1940 году.

Одна из причин вероятных причин разрушения — механический резонанс, который возник вследствие совпадения частоты ветрового потока с внутренней собственной частотой моста.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Ядерный магнитный резонанс

Отдельные виды атомов содержат ядра, которые можно сравнить с миниатюрными магнитами. Под влиянием мощного внешнего магнитного поля ядра атомов меняют свою ориентацию в соответствии со взаимным расположением своего собственного магнитного поля по отношению к внешнему. Внешний сильный электромагнитный импульс поглощается атомом вследствие чего происходит его переориентация. Как только источник импульса прекращает свое действие ядра возвращаются на свои исходные позиции.

Ядра в зависимости от принадлежности к тому или иному атому способны принимать энергию в определенном диапазоне частот. Смена позиции ядра происходит в один такт с внешним колебаниям электромагнитного поля, что и служит причиной возникновения так называемого ядерного магнитного резонанса (сокращенно ЯМР). В научном мире этот вид резонанса используется в целях изучения атомных связей в рамках сложных молекул. Используемый в медицине метод отображения магнитного резонанса (ОМР) позволяет выводить результаты сканирования внутренних человеческих органов на дисплей для постановки диагноза и назначения лечения.

Магнитное поле ОМР сканера, формируемое при помощи катушек индуктивности, создает излучение высокой частоты под воздействием которого водорода изменяют свою ориентацию при условии совпадении своих собственных частот с внешним. В результате полученных данных с датчиков формируется графическая картинка на мониторе.

Если сравнивать метод ЯМР и ОМР относительно излучения, то сканирование с помощью ядерного магнитного резонатора менее вредно, чем ОМР. Также при исследовании мягких тканей технология ЯМР показала большую эффективность в отражении детализации исследуемого участка ткани.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул. С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей. Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные