Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Которые в своем составе содержат одну или несколько гидроксильных группу. В зависимости от количества групп ОН эти делятся на одноатомные спирты, трехатомные и т.д. Чаще всего эти сложные вещества рассматривают как производные углеводородов, молекулы которых претерпели изменения, т.к. один или несколько атомов водорода заместились на гидроксильную группу.

Наиболее простыми представителями данного класса являются одноатомные спирты, общая формула которых выглядит так: R-OH или

Cn+ H 2n+1OH.

  1. Спирты, содержащие до 15 атомов углерода - жидкости, 15 и более - твердые вещества.
  2. Растворимость в воде зависит от молекулярной массы, чем она выше, тем спирт хуже растворяется воде. Так, низшие спирты (до пропанола) смешиваются с водой в любых пропорциях, а высшие практически не растворимы в ней.
  3. Температура кипения также возрастает с увеличением атомной массы, например, t кип. СН3ОН= 65 °С, а t кип. С2Н5ОН =78 °С.
  4. Чем выше температура кипения, тем ниже летучесть, т.е. вещество плохо испаряется.

Данные физические свойства насыщенных спиртов с одной гидроксильной группой можно объяснить возникновением межмолекулярной водородной связи между отдельными молекулами самого соединения или спирта и воды.

Одноатомные спирты способны вступать в такие химические реакции:

Рассмотрев химические свойства алкоголей, можно сделать вывод, что одноатомные спирты - это амфотерные соединения, т.к. они могут реагировать с щелочными металлами, проявляя слабые и с галогенводородами, проявляя основные свойства. Все химические реакции идут с разрывом связи О-Н или С-О.

Таким образом, предельные одноатомные спирты - это сложные соединения с одной группой ОН, не имеющие свободных валентностей после образования связи С-С и проявляющие слабо свойства и кислот, и оснований. За счет своих физических и химических свойств они нашли широкое применение в органическом синтезе, в производстве растворителей, добавок к топливу, а также в пищевой промышленности, медицине, косметологии (этанол).

(алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами )

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO –С H 2 – CH 2 – OH , глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода

есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH (OH ) 2 ® RCH = O + H 2 O , не существуют.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол С

H 3 – CH 2 – OH , пропанол С H 3 – CH 2 – CH 2 – OH. б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы

R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны:

CH 2 =CH–OH ® CH 3 –CH=O Номенклатура спиртов. Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»: В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4): 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами. Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НС є С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH. Физические свойства спиртов. Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R , содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов. Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

CH 3 OH + 2 Na ® 2 CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O

® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент

R – O – A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разраваются, в результате образуются простые эфиры – соединения, содержащие фрагмент

R –О– R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).


Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов. Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400

° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия: ® Н 3 СОН Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12) 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ Применение спиртов. Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин

HOCH 2 – CH (OH )– CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (

HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН 2 –(СНОH) 3 –CН 2 ОН и сорбит neНОСН 2 – (СНОН) 4 –СН 2 OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

Михаил Левицкий

ЛИТЕРАТУРА Шабаров Ю.С. Органическая химия . Москва, «Химия», 1994

Спиртами называют соединения, содержащие одну или несколько гидроксильных групп, непосредственно связанных с углеводородным радикалом.

Классификация спиртов

Спирты классифицируют по различным структурным признакам.

1. По числу гидроксильных групп спирты подразделяются на

o одноатомные (одна группа -ОН)

Например, С H 3 OH метанол, CH 3 CH 2 OH этанол

o многоатомные (две и более групп -ОН).

Современное название многоатомных спиртов - полиолы (диолы, триолы и т.д). Примеры:

двухатомный спирт – этиленгликоль (этандиол)

HO–СH 2 –CH 2 –OH

трехатомный спирт – глицерин (пропантриол-1,2,3)

HO–СH 2 –СН(ОН)–CH 2 –OH

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH) 2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH) 3 не существуют.

2. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты

o первичные R–CH 2 –OH,

o вторичные R 2 CH–OH,

o третичные R 3 C–OH.

Например:

В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH 2 –) и одну вторичноспиртовую (–СН(ОН)–) группы.

3. По строению радикалов, связанных с атомом кислорода, спирты подразделяются на

o предельные (например, СH 3 – CH 2 –OH)

o непредельные (CH 2 =CH–CH 2 –OH)

o ароматические (C 6 H 5 CH 2 –OH)

Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны.

Например, виниловый спирт CH 2 =CH–OH превращается в уксусный альдегид CH 3 –CH=O

Предельные одноатомные спирты

1. Определение

ПРЕДЕЛЬНЫЕ ОДНОАТОМНЫЕ СПИРТЫ – кислородсодержащие органические вещества, производные предельных углеводородов, в которых один атом водорода замещён на функциональную группу (- OH )

2. Гомологический ряд


3. Номенклатура спиртов

Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы (если это необходимо). Например:


Нумерация ведется от ближайшего к ОН-группе конца цепи.

Цифра, отражающая местоположение ОН-группы, в русском языке обычно ставится после суффикса "ол".

По другому способу (радикально-функциональная номенклатура) названия спиртов производят от названий радикалов с добавлением слова "спирт ". В соответствии с этим способом приведенные выше соединения называют: метиловый спирт, этиловый спирт, н -пропиловый спирт СН 3 -СН 2 -СН 2 -ОН, изопропиловый спирт СН 3 -СН(ОН)-СН 3 .

4. Изомерия спиртов

Для спиртов характерна структурная изомерия :

· изомерия положения ОН-группы (начиная с С 3);
Например:

·углеродного скелета (начиная с С 4);
Например, изомеры углеродного скелета для C 4 H 9 OH:

· межклассовая изомерия с простыми эфирами
Например,

этиловый спирт СН 3 CH 2 –OH и диметиловый эфир CH 3 –O–CH 3

Возможна также пространственная изомерия – оптическая.

Например, бутанол-2 СH 3 C H(OH)СH 2 CH 3 , в молекуле которого второй атом углерода (выделен цветом) связан с четырьмя различными заместителями, существует в форме двух оптических изомеров.

5. Строение спиртов

Строение самого простого спирта - метилового (метанола) - можно представить формулами:

Из электронной формулы видно, что кислород в молекуле спирта имеет две неподеленные электронные пары.

Свойства спиртов и фенолов определяются строением гидроксильной группы, характером ее химических связей, строением углеводородных радикалов и их взаимным влиянием.

Связи О–Н и С–О – полярные ковалентные. Это следует из различий в электроотрицательности кислорода (3,5), водорода (2,1) и углерода (2,4). Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атому кислорода в спиртах свойственна sp 3 -гибридизация. В образовании его связей с атомами C и H участвуют две 2sp 3 -атомные орбитали, валентный угол C–О–H близок к тетраэдрическому (около 108°). Каждая из двух других 2 sp 3 -орбиталей кислорода занята неподеленной парой электронов.

Подвижность атома водорода в гидроксильной группе спирта несколько меньше, чем в воде. Более "кислым" в ряду одноатомных предельных спиртов будет метиловый (метанол).
Радикалы в молекуле спирта также играют определенную роль в проявлении кислотных свойств. Обычно углеводородные радикалы понижают кислотное свойства. Но если в них содержатся, электроноакцепторные группы, то кислотность спиртов заметно увеличивается. Например, спирт (СF 3) 3 С-ОН за счет атомов фтора становится настолько кислым, что способен вытеснять угольную кислоту из ее солей.

Спирты — сложные органические соединения, углеводороды, обязательно содержащие один или несколько гидроксилов (групп ОН—), связанных с углеводородным радикалом.

История открытия

По мнению историков, уже за 8 веков до нашей эры человек употреблял напитки, содержащие этиловый спирт. Их получали методом сбраживания фруктов или меда. В чистом виде этанол был выделен из вина арабами примерно в VI-VII веках, а европейцами — на пять столетий позже. В XVII веке перегонкой древесины был получен метанол, а в XIX веке химики установили, что спирты — это целая категория органических веществ.

Классификация

— По количеству гидроксилов спирты делят на одно-, двух-, трех-, многоатомные. Например, одноатомный этанол; трехатомный глицерин.
— По тому, с каким числом радикалов связан атом углерода, соединенный с группой ОН—, спирты разделяют на первичные, вторичные, третичные.
— По характеру связей радикала спирты бывают предельными, непредельными, ароматическими. В ароматических спиртах гидроксил связан не напрямую с бензольным кольцом, а через другой (другие) радикалы.
— Соединения, в которых ОН— прямо связана с бензольным циклом, считаются отдельным классом фенолов.

Свойства

В зависимости от того, сколько в молекуле углеводородных радикалов, спирты могут быть жидкими, вязкими, твердыми. Водорастворимость уменьшается с ростом количества радикалов.

Простейшие спирты смешиваются с водой в любых пропорциях. Если же в молекулу входит более 9 радикалов, то вообще не растворяются в воде. Все спирты хорошо растворяются в органических растворителях.
— Спирты горят, выделяя большое количество энергии.
— Вступают в реакции с металлами, в результате чего получаются соли — алкоголяты.
— Взаимодействуют с основаниями, проявляя качества слабых кислот.
— Реагируют с кислотами и ангидридами, проявляя оснóвные свойства. Результатом реакций являются сложные эфиры.
— Воздействие сильными окислителями приводит к образованию альдегидов или кетонов (в зависимости от вида спирта).
— При определенных условиях из спиртов получают простые эфиры, алкены (соединения с двойной связью), галогенуглеводороды, амины (производные от аммиака углеводороды).

Спирты токсичны для человеческого организма, некоторые — ядовиты (метилен, этиленгликоль). Этилен оказывает наркотическое воздействие. Опасны и пары спиртов, поэтому работы с растворителями на основе спирта должны производиться с соблюдением техники безопасности.

Тем не менее, спирты участвуют в естественном метаболизме растений, животных и человека. К категории спиртов относятся такие жизненно важные вещества как витамины A и D, стероидные гормоны эстрадиол и кортизол. Более половины липидов, поставляющих энергию нашему организму, имеют в своей основе глицерин.

Применение

— В органическом синтезе.
— Биотопливо, добавки в топливо, ингредиент тормозной жидкости, гидравлических жидкостей.
— Растворители.
— Сырье для производства ПАВ, полимеров, пестицидов, антифризов, взрывчатых и отравляющих веществ, бытовой химии.
— Душистые вещества для парфюмерии. Входят в состав косметических и медицинских средств.
— Основа алкогольных напитков, растворитель для эссенций; сахарозаменитель (маннит и т.п.); краситель (лютеин), ароматизатор (ментол).

В нашем магазине можно купить спирты разного вида.

Бутиловый спирт

Одноатомный спирт. Применяется в качестве растворителя; пластификатора при изготовлении полимеров; модификатора формальдегидных смол; сырья для органического синтеза и получения душистых веществ для парфюмерии; добавки к топливу.

Фурфуриловый спирт

Одноатомный спирт. Востребован для полимеризации смол и пластиков, как растворитель и пленкообразователь в лакокрасочной продукции; сырье для органического синтеза; связующий и уплотняющий агент при производстве полимербетона.

Изопропиловый спирт (пропанол-2)

Вторичный одноатомный спирт. Активно используется в медицине, металлургии, химпроме. Заменитель этанола в парфюмерных, косметических, дезинфицирующих продуктах, средствах бытовой химии, антифризах, очистителях.

Этиленгликоль

Двухатомный спирт. Применяется при производстве полимеров; красок для типографий и текстильного производства; входит в состав антифризов, тормозных жидкостей, теплоносителей. Используется для осушения газов; как сырье для органического синтеза; растворитель; средство для криогенной «заморозки» живых организмов.

Глицерин

Трехатомный спирт. Востребован в косметологии, пищепроме, медицине, как сырье в орг. синтезе; для изготовления взрывчатого вещества нитроглицерина. Применяется в сельском хозяйстве, электротехнике, текстильной, бумажной, кожевенной, табачной, лакокрасочной индустрии, в производстве пластиков и средств бытовой химии.

Маннит

Шестиатомный (многоатомный) спирт. Применяется как пищевая добавка; сырье для изготовления лаков, красок, олиф, смол; входит в состав ПАВ, парфюмерных продуктов.

Содержание статьи

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH 2 –CH 2 –OH, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH(OH) 2 ® RCH=O + H 2 O

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол СH 3 –C H 2 –OH, пропанол СH 3 –CH 2 –C H 2 –OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны :

CH 2 =CH–OH ® CH 3 –CH=O

Номенклатура спиртов.

Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»:

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4):

Рис. 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НСє С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH.

Физические свойства спиртов.

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов.

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент R–O–A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разрываются, в результате образуются простые эфиры – соединения, содержащие фрагмент R–О–R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).

Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов.

Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия:

СО + 2 Н 2 ® Н 3 СОН

Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12)

Рис. 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ

Применение спиртов.

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы , содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок .

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH 2 –CH(OH)–CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2–(СНОH)3–CН2ОН и сорбит НОСН2– (СНОН)4–СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни .

Михаил Левицкий

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные