Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.

Определение вектора

Любая упорядоченная пара точек А к В пространства определяет направленный отрезок , т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В - его концом. Направлением отрезка считают направление от начала к концу.

Определение
Направленный отрезок называется вектором.

Будем обозначать вектор символом \(\overrightarrow{AB} \), причем первая буква означает начало вектора, а вторая - его конец.

Вектор, у которого начало и конец совпадают, называется нулевым и обозначается \(\vec{0} \) или просто 0.

Расстояние между началом и концом вектора называется его длиной и обозначается \(|\overrightarrow{AB}| \) или \(|\vec{a}| \).

Векторы \(\vec{a} \) и \(\vec{b} \) называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. Коллинеарные векторы могут быть направлены одинаково или противоположно.

Теперь можно сформулировать важное понятие равенства двух векторов.

Определение
Векторы \(\vec{a} \) и \(\vec{b} \) называются равными (\(\vec{a} = \vec{b} \)), если они коллинеарны, одинаково направлены и их длины равны.

На рис. 1 изображены слева неравные, а справа - равные векторы \(\vec{a} \) и \(\vec{b} \). Из определения равенства векторов следует, что если данный вектор перенести параллельно самому себе, то получится вектор, равный данному. В связи с этим векторы в аналитической геометрии называют свободными.

Проекция вектора на ось

Пусть в пространстве заданы ось \(u \) и некоторый вектор \(\overrightarrow{AB} \). Проведем через точки А и В плоскости, перпендикулярные оси \(u \). Обозначим через А" и В" точки пересечения этих плоскостей с осью (см. рисунок 2).

Проекцией вектора \(\overrightarrow{AB} \) на ось \(u \) называется величина А"В" направленного отрезка А"В" на оси \(u \). Напомним, что
\(A"B" = |\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) совпадает c направлением оси \(u \),
\(A"B" = -|\overrightarrow{A"B"}| \) , если направление \(\overrightarrow{A"B"} \) противоположно направлению оси \(u \),
Обозначается проекция вектора \(\overrightarrow{AB} \) на ось \(u \) так: \(Пр_u \overrightarrow{AB} \).

Теорема
Проекция вектора \(\overrightarrow{AB} \) на ось \(u \) равна длине вектора \(\overrightarrow{AB} \) , умноженной на косинус угла между вектором \(\overrightarrow{AB} \) и осью \(u \) , т.е.

\(Пр_u \overrightarrow{AB} = |\overrightarrow{AB}|\cos \varphi \) где \(\varphi \) - угол между вектором \(\overrightarrow{AB} \) и осью \(u \).

Замечание
Пусть \(\overrightarrow{A_1B_1}=\overrightarrow{A_2B_2} \) и задана какая-то ось \(u \). Применяя к каждому из этих векторов формулу теоремы, получаем

\(Пр_u \overrightarrow{A_1B_1} = Пр_u \overrightarrow{A_2B_2} \) т.е. равные векторы имеют равные проекции на одну и ту же ось.

Проекции вектора на оси координат

Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор \(\overrightarrow{AB} \). Пусть, далее, \(X = Пр_u \overrightarrow{AB}, \;\; Y = Пр_u \overrightarrow{AB}, \;\; Z = Пр_u \overrightarrow{AB} \). Проекции X, Y, Z вектора \(\overrightarrow{AB} \) на оси координат называют его координатами. При этом пишут
\(\overrightarrow{AB} = (X;Y;Z) \)

Теорема
Каковы бы ни были две точки A(x 1 ; y 1 ; z 1) и B(x 2 ; y 2 ; z 2), координаты вектора \(\overrightarrow{AB} \) определяются следующими формулами:

X = x 2 -x 1 , Y = y 2 -y 1 , Z = z 2 -z 1

Замечание
Если вектор \(\overrightarrow{AB} \) выходит из начала координат, т.е. x 2 = x, y 2 = y, z 2 = z, то координаты X, Y, Z вектора \(\overrightarrow{AB} \) равны координатам его конца:
X = x, Y = y, Z = z.

Направляющие косинусы вектора

Пусть дан произвольный вектор \(\vec{a} = (X;Y;Z) \); будем считать, что \(\vec{a} \) выходит из начала координат и не лежит ни в одной координатной плоскости. Проведем через точку А плоскости, перпендикулярные осям. Вместе с координатными плоскостями они образуют прямоугольный параллелепипед, диагональю которого служит отрезок ОА (см. рисунок).

Из элементарной геометрии известно, что квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его измерений. Следовательно,
\(|OA|^2 = |OA_x|^2 + |OA_y|^2 + |OA_z|^2 \)
Но \(|OA| = |\vec{a}|, \;\; |OA_x| = |X|, \;\; |OA_y| = |Y|, \;\;|OA_z| = |Z| \); таким образом, получаем
\(|\vec{a}|^2 = X^2 + Y^2 + Z^2 \)
или
\(|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} \)
Эта формула выражает длину произвольного вектора через его координаты.

Обозначим через \(\alpha, \; \beta, \; \gamma \) углы между вектором \(\vec{a} \) и осями координат. Из формул проекции вектора на ось и длины вектора получаем
\(\cos \alpha = \frac{X}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \beta = \frac{Y}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \gamma = \frac{Z}{\sqrt{X^2 + Y^2 + Z^2}} \)
\(\cos \alpha, \;\; \cos \beta, \;\; \cos \gamma \) называются направляющими косинусами вектора \(\vec{a} \) .

Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
\(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \)
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.

Линейные операции над векторами и их основные свойства

Линейными операциями над векторами называются операции сложения и вычитания векторов и умножения векторов на числа.

Сложение двух векторов

Пусть даны два вектора \(\vec{a} \) и \(\vec{b} \). Суммой \(\vec{a} + \vec{b} \) называется вектор, который идет из начала вектора \(\vec{a} \) в конец вектора \(\vec{b} \) при условии, что вектор \(\vec{b} \) приложен к концу вектора \(\vec{a} \) (см. рисунок).

Замечание
Действие вычитания векторов обратно действию сложения, т.е. разностью \(\vec{b} - \vec{a} \) векторов \(\vec{b} \) и \(\vec{a} \) называется вектор, который в сумме с вектором\(\vec{a} \) дает вектор \(\vec{b} \) (см. рисунок).

Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора \(\vec{a},\;\; \vec{b}, \;\; \vec{c} \). Сложив \(\vec{a} \) и \(\vec{b} \), получим вектор \(\vec{a} + \vec{b} \). Прибавив теперь к нему вектор \(\vec{c} \), получим вектор \(\vec{a} + \vec{b} + \vec{c} \)

Произведение вектора на число

Пусть даны вектор \(\vec{a} \neq \vec{0} \) и число \(\lambda \neq 0 \). Произведением \(\lambda \vec{a} \) называется вектор, который коллинеарен вектору \(\vec{a} \), имеет длину, равную \(|\lambda| |\vec{a}| \), и направление такое же, как и вектор \(\vec{a} \) , если \(\lambda > 0 \), и противоположное, если \(\lambda Геометрический смысл операции умножения вектора \(\vec{a} \neq \vec{0} \) на число \(\lambda \neq 0 \) можно выразить следующим образом: если \(|\lambda| >1 \), то при умножении вектора \(\vec{a} \) на число \(\lambda \) вектор \(\vec{a} \) «растягивается» в \(\lambda \) раз, а если \(|\lambda| 1 \).

Если \(\lambda =0 \) или \(\vec{a} = \vec{0} \), то произведение \(\lambda \vec{a} \) считаем равным нулевому вектору.

Замечание
Используя определение умножения вектора на число нетрудно доказать, что если векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны и \(\vec{a} \neq \vec{0} \), то существует (и притом только одно) число \(\lambda \) такое, что \(\vec{b} = \lambda \vec{a} \)

Основные свойства линейных операций

1. Переместительное свойство сложения
\(\vec{a} + \vec{b} = \vec{b} + \vec{a} \)

2. Сочетательное свойство сложения
\((\vec{a} + \vec{b})+ \vec{c} = \vec{a} + (\vec{b}+ \vec{c}) \)

3. Сочетательное свойство умножения
\(\lambda (\mu \vec{a}) = (\lambda \mu) \vec{a} \)

4. Распределительное свойство относительно суммы чисел
\((\lambda +\mu) \vec{a} = \lambda \vec{a} + \mu \vec{a} \)

5. Распределительное свойство относительно суммы векторов
\(\lambda (\vec{a}+\vec{b}) = \lambda \vec{a} + \lambda \vec{b} \)

Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».

Теоремы о проекциях векторов

Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
\(Пр_u (\vec{a} + \vec{b}) = Пр_u \vec{a} + Пр_u \vec{b} \)

Теорему можно обобщить на случай любого числа слагаемых.

Теорема
При умножении вектора \(\vec{a} \) на число \(\lambda \) его проекция на ось также умножается на это число, т.е. \(Пр_u \lambda \vec{a} = \lambda Пр_u \vec{a} \)

Следствие
Если \(\vec{a} = (x_1;y_1;z_1) \) и \(\vec{b} = (x_2;y_2;z_2) \), то
\(\vec{a} + \vec{b} = (x_1+x_2; \; y_1+y_2; \; z_1+z_2) \)

Следствие
Если \(\vec{a} = (x;y;z) \), то \(\lambda \vec{a} = (\lambda x; \; \lambda y; \; \lambda z) \) для любого числа \(\lambda \)

Отсюда легко выводится условие коллинеарности двух векторов в координатах.
В самом деле, равенство \(\vec{b} = \lambda \vec{a} \) равносильно равенствам \(x_2 = \lambda x_1, \; y_2 = \lambda y_1, \; z_2 = \lambda z_1 \) или
\(\frac{x_2}{x_1} = \frac{y_2}{y_1} = \frac{z_2}{z_1} \) т.е. векторы \(\vec{a} \) и \(\vec{b} \) коллинеарны в том и только в том случае, когда их координаты пропорциональны.

Разложение вектора по базису

Пусть векторы \(\vec{i}, \; \vec{j}, \; \vec{k} \) - единичные векторы осей координат, т.e. \(|\vec{i}| = |\vec{j}| = |\vec{k}| = 1 \), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов \(\vec{i}, \; \vec{j}, \; \vec{k} \) называется базисом.
Имеет место следующая теорема.

Теорема
Любой вектор \(\vec{a} \) может быть единственным образом разложен по базису \(\vec{i}, \; \vec{j}, \; \vec{k}\; \), т.е. представлен в виде
\(\vec{a} = \lambda \vec{i} + \mu \vec{j} + \nu \vec{k} \)
где \(\lambda, \;\; \mu, \;\; \nu \) - некоторые числа.

Пусть в пространстве даны два вектора и . Отложим от произвольной точки O векторы и . Углом между векторами и называется наименьший из углов . Обозначается .

Рассмотрим ось l и отложим на ней единичный вектор (т.е. вектор, длина которого равна единице).

Под углом между вектором и осью l понимают угол между векторами и .

Итак, пусть l – некоторая ось и – вектор.

Обозначим через A 1 и B 1 проекции на ось l соответственно точек A и B . Предположим, что A 1 имеет координату x 1 , а B 1 – координату x 2 на оси l .

Тогда проекцией вектора на ось l называется разность x 1 x 2 между координатами проекций конца и начала вектора на эту ось.

Проекцию вектора на ось l будем обозначать .

Ясно, что если угол между вектором и осью l острый, то x 2 > x 1 , и проекция x 2 x 1 > 0; если этот угол тупой, то x 2 < x 1 и проекция x 2 x 1 < 0. Наконец, если вектор перпендикулярен оси l , то x 2 = x 1 и x 2 x 1 =0.

Таким образом, проекция вектора на ось l – это длина отрезка A 1 B 1 , взятая с определённым знаком. Следовательно, проекция вектора на ось это число или скаляр.

Аналогично определяется проекция одного вектора на другой. В этом случае находятся проекции концов даного вектора на ту прямую, на которой лежит 2-ой вектор.

Рассмотрим некоторые основные свойства проекций .

ЛИНЕЙНО ЗАВИСИМЫЕ И ЛИНЕЙНО НЕЗАВИСИМЫЕ СИСТЕМЫ ВЕКТОРОВ

Рассмотрим несколько векторов .

Линейной комбинацией данных векторов называется любой вектор вида , где - некоторые числа. Числа называются коэффициентами линейной комбинации. Говорят также, что в этом случае линейно выражается через данные векторы , т.е. получается из них с помощью линейных действий.

Например, если даны три вектора то в качестве их линейной комбинации можно рассматривать векторы:

Если вектор представлен как линейная комбинация каких-то векторов, то говорят, что он разложен по этим векторам.

Векторы называются линейно зависимыми , если существуют такие числа, не все равные нулю, что . Ясно, что заданные векторы будут линейно зависимыми, если какой-либо из этих векторов линейно выражается через остальные.

В противном случае, т.е. когда соотношение выполняется только при , эти векторы называются линейно независимыми .

Теорема 1. Любые два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

Доказательство :

Аналогично можно доказать следующую теорему.

Теорема 2. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство .

БАЗИС

Базисом называется совокупность отличных от нулей линейно независимых векторов. Элементы базиса будем обозначать .

В предыдущем пункте мы видели, что два неколлинеарных вектора на плоскости линейно независимы. Поэтому согласно теореме 1, из предыдущего пункта, базисом на плоскости являются любые два неколлинеарных вектора на этой плоскости.

Аналогично в пространстве линейно независимы любые три некомпланарных вектора. Следовательно, базисом в пространстве назовём три некомпланарных вектора.

Справедливо следующее утверждение.

Теорема. Пусть в пространстве задан базис . Тогда любой вектор можно представить в виде линейной комбинации , где x , y , z – некоторые числа. Такое разложение единственно.

Доказательство .

Таким образом, базис позволяет однозначно сопоставить каждому вектору тройку чисел – коэффициенты разложения этого вектора по векторам базиса: . Верно и обратное, каждой тройке чисел x, y, z при помощи базиса можно сопоставить вектор, если составить линейную комбинацию .

Если базис и , то числа x, y, z называются координатами вектора в данном базисе. Координаты вектора обозначают .


ДЕКАРТОВА СИСТЕМА КООРДИНАТ

Пусть в пространстве задана точка O и три некомпланарных вектора .

Декартовой системой координат в пространстве (на плоскости) называется совокупность точки и базиса, т.е. совокупность точки и трёх некомпланарных векторов (2-х неколлинеарных векторов), выходящих из этой точки.

Точка O называется началом координат; прямые, проходящие через начало координат в направлении базисных векторов, называются осями координат – осью абсцисс, ординат и аппликат. Плоскости, проходящие через оси координат, называют координатными плоскостями.

Рассмотрим в выбранной системе координат произвольную точку M . Введём понятие координаты точки M . Вектор , соединяющий начало координат с точкой M . называется радиус-вектором точки M .

Вектору в выбранном базисе можно сопоставить тройку чисел – его координаты: .

Координаты радиус-вектора точки M . называются координатами точки M . в рассматриваемой системе координат. M(x,y,z) . Первая координата называется абсциссой, вторая – ординатой, третья – аппликатой.

Аналогично определяются декартовы координаты на плоскости. Здесь точка имеет только две координаты – абсциссу и ординату.

Легко видеть, что при заданной системе координат каждая точка имеет определённые координаты. С другой стороны, для каждой тройки чисел найдётся единственная точка, имеющая эти числа в качестве координат.

Если векторы, взятые в качестве базиса, в выбранной системе координат, имеют единичную длину и попарно перпендикулярны, то система координат называется декартовой прямоугольной.

Несложно показать, что .

Направляющие косинусы вектора полностью определяют его направление, но ничего не говорят о его длине.

Ось – это направление. Значит, проекция на ось или на направленную прямую считается одним и тем же. Проекция бывает алгебраическая и геометрическая. В геометрическом понимают проекцию вектора на ось как вектор, а алгебраическом – число. То есть применяются понятия проекция вектора на ось и числовая проекция вектора на ось.

Yandex.RTB R-A-339285-1

Если имеем ось L и ненулевой вектор A B → , то можем построить вектор A 1 B 1 ⇀ , обозначив проекции его точек A 1 и B 1 .

A 1 B → 1 будет являться проекцией вектора A B → на L .

Определение 1

Проекцией вектора на ось называют вектор, начало и конец которого являются проекции начала и конца заданного вектора. n p L A B → → принято обозначать проекцию A B → на L . Для построения проекции на L опускают перпендикуляры на L .

Пример 1

Пример проекции вектора на ось.

На координатной плоскости О х у задается точка M 1 (x 1 , y 1) . Необходимо построить проекции на О х и О у для изображения радиус-вектора точки M 1 . Получим координаты векторов (x 1 , 0) и (0 , y 1) .

Если идет речь о проекции a → на ненулевой b → или проекции a → на направление b → , то имеется в виду проекция a → на ось, с которой совпадает направление b → . Проекция a → на прямую, определяемая b → , имеет обозначение n p b → a → → . Известно, что когда угол между a → и b → , можно считать n p b → a → → и b → сонаправленными. В случае, когда угол тупой, n p b → a → → и b → противоположно направлены. В ситуации перпендикулярности a → и b → , причем a → - нулевой, проекция a → по направлению b → является нулевым вектором.

Числовая характеристика проекции вектора на ось – числовая проекция вектора на заданную ось.

Определение 2

Числовой проекцией вектора на ось называют число, которое равно произведению длины данного вектора на косинус угла между данным вектором и вектором, который определяет направление оси.

Числовая проекция A B → на L имеет обозначение n p L A B → , а a → на b → - n p b → a → .

Исходя из формулы, получим n p b → a → = a → · cos a → , b → ^ , откуда a → является длиной вектора a → , a ⇀ , b → ^ - угол между векторами a → и b → .

Получим формулу вычисления числовой проекции: n p b → a → = a → · cos a → , b → ^ . Она применима при известных длинах a → и b → и угле между ними. Формула применима при известных координатах a → и b → , но имеется ее упрощенный вид.

Пример 2

Узнать числовую проекцию a → на прямую по направлению b → при длине a → равной 8 и углом между ними в 60 градусов. По условию имеем a ⇀ = 8 , a ⇀ , b → ^ = 60 ° . Значит, подставляем числовые значения в формулу n p b ⇀ a → = a → · cos a → , b → ^ = 8 · cos 60 ° = 8 · 1 2 = 4 .

Ответ: 4.

При известном cos (a → , b → ^) = a ⇀ , b → a → · b → , имеем a → , b → как скалярное произведение a → и b → . Следуя из формулы n p b → a → = a → · cos a ⇀ , b → ^ , мы можем найти числовую проекцию a → направленную по вектору b → и получим n p b → a → = a → , b → b → . Формула эквивалента определению, указанному в начале пункта.

Определение 3

Числовой проекцией вектора a → на ось, совпадающей по направлению с b → , называют отношение скалярного произведения векторов a → и b → к длине b → . Формула n p b → a → = a → , b → b → применима для нахождения числовой проекции a → на прямую, совпадающую по направлению с b → , при известных a → и b → координатах.

Пример 3

Задан b → = (- 3 , 4) . Найти числовую проекцию a → = (1 , 7) на L .

Решение

На координатной плоскости n p b → a → = a → , b → b → имеет вид n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 , при a → = (a x , a y) и b → = b x , b y . Чтобы найти числовую проекцию вектора a → на ось L , нужно: n p L a → = n p b → a → = a → , b → b → = a x · b x + a y · b y b x 2 + b y 2 = 1 · (- 3) + 7 · 4 (- 3) 2 + 4 2 = 5 .

Ответ: 5.

Пример 4

Найти проекцию a → на L , совпадающей с направлением b → , где имеются a → = - 2 , 3 , 1 и b → = (3 , - 2 , 6) . Задано трехмерное пространство.

Решение

По заданным a → = a x , a y , a z и b → = b x , b y , b z вычислим скалярное произведение: a ⇀ , b → = a x · b x + a y · b y + a z · b z . Длину b → найдем по формуле b → = b x 2 + b y 2 + b z 2 . Отсюда следует, что формула определения числовой проекции a → будет: n p b → a ⇀ = a → , b → b → = a x · b x + a y · b y + a z · b z b x 2 + b y 2 + b z 2 .

Подставляем числовые значения: n p L a → = n p b → a → = (- 2) · 3 + 3 · (- 2) + 1 · 6 3 2 + (- 2) 2 + 6 2 = - 6 49 = - 6 7 .

Ответ: - 6 7 .

Просмотрим связь между a → на L и длиной проекции a → на L . Начертим ось L , добавив a → и b → из точки на L , после чего проведем перпендикулярную прямую с конца a → на L и проведем проекцию на L . Существуют 5 вариаций изображения:

Первый случай при a → = n p b → a → → означает a → = n p b → a → → , отсюда следует n p b → a → = a → · cos (a , → b → ^) = a → · cos 0 ° = a → = n p b → a → → .

Второй случай подразумевает применение n p b → a → ⇀ = a → · cos a → , b → , значит, n p b → a → = a → · cos (a → , b →) ^ = n p b → a → → .

Третий случай объясняет, что при n p b → a → → = 0 → получаем n p b ⇀ a → = a → · cos (a → , b → ^) = a → · cos 90 ° = 0 , тогда n p b → a → → = 0 и n p b → a → = 0 = n p b → a → → .

Четвертый случай показывает n p b → a → → = a → · cos (180 ° - a → , b → ^) = - a → · cos (a → , b → ^) , следует n p b → a → = a → · cos (a → , b → ^) = - n p b → a → → .

Пятый случай показывает a → = n p b → a → → , что означает a → = n p b → a → → , отсюда имеем n p b → a → = a → · cos a → , b → ^ = a → · cos 180 ° = - a → = - n p b → a → .

Определение 4

Числовой проекцией вектора a → на ось L , которая направлена как и b → , имеет значение:

  • длины проекции вектора a → на L при условии, если угол между a → и b → меньше 90 градусов или равен 0: n p b → a → = n p b → a → → с условием 0 ≤ (a → , b →) ^ < 90 ° ;
  • ноля при условии перпендикулярности a → и b → : n p b → a → = 0 , когда (a → , b → ^) = 90 ° ;
  • длины проекции a → на L , умноженной на -1, когда имеется тупой или развернутый угол векторов a → и b → : n p b → a → = - n p b → a → → с условием 90 ° < a → , b → ^ ≤ 180 ° .

Пример 5

Дана длина проекции a → на L , равная 2 . Найти числовую проекцию a → при условии, что угол равен 5 π 6 радиан.

Решение

Из условия видно, что данный угол является тупым: π 2 < 5 π 6 < π . Тогда можем найти числовую проекцию a → на L: n p L a → = - n p L a → → = - 2 .

Ответ: - 2 .

Пример 6

Дана плоскость О х y z с длиной вектора a → равной 6 3 , b → (- 2 , 1 , 2) с углом в 30 градусов. Найти координаты проекции a → на ось L .

Решение

Для начала вычисляем числовую проекцию вектора a → : n p L a → = n p b → a → = a → · cos (a → , b →) ^ = 6 3 · cos 30 ° = 6 3 · 3 2 = 9 .

По условию угол острый, тогда числовая проекция a → = длине проекции вектора a → : n p L a → = n p L a → → = 9 . Данный случай показывает, что векторы n p L a → → и b → сонаправлены, значит имеется число t , при котором верно равенство: n p L a → → = t · b → . Отсюда видим, что n p L a → → = t · b → , значит можем найти значение параметра t: t = n p L a → → b → = 9 (- 2) 2 + 1 2 + 2 2 = 9 9 = 3 .

Тогда n p L a → → = 3 · b → с координатами проекции вектора a → на ось L равны b → = (- 2 , 1 , 2) , где необходимо умножить значения на 3. Имеем n p L a → → = (- 6 , 3 , 6) . Ответ: (- 6 , 3 , 6) .

Необходимо повторить ранее изученную информацию об условии коллинеарности векторов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

а на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок . Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу - его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $\overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $\overline{a}$ (рис. 1).

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $\overline{a}\overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $\overline{a}↓\overline{d}$

Определение 6

Длиной вектора $\overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|\overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $\overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A"$ - начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B"$ - конец искомого вектора. Вектор $\overline{A"B"}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $\overline{AB}$ на ось $l$, изображенные на рисунке 6.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A"$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B"$ (рис. 7).

Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b) или

Где a b - скалярное произведение векторов , |a| - модуль вектора a .

Инструкция . Для нахождения проекции вектора Пp a b в онлайн режиме необходимо указать координаты векторов a и b . При этом вектор может быть задан на плоскости (две координаты) и в пространстве (три координаты). Полученное решение сохраняется в файле Word . Если векторы заданы через координаты точек, то необходимо использовать этот калькулятор .

Заданы :
две координаты вектора
три координаты вектора
a: ; ;
b: ; ;

Классификация проекций вектора

Виды проекций по определению проекция вектора

Виды проекций по системе координат

Свойства проекции вектора

  1. Геометрическая проекция вектора есть вектор (имеет направление).
  2. Алгебраическая проекция вектора есть число.

Теоремы о проекциях вектора

Теорема 1 . Проекция суммы векторов на какую-либо ось равна проекции слагаемых векторов на ту же ось.


Теорема 2 . Алгебраическая проекция вектора на какую-либо ось равна произведению длины вектора на косинус угла между осью и вектором:

Пр a b = |b|cos(a,b)

Виды проекций вектора

  1. проекция на ось OX.
  2. проекция на ось OY.
  3. проекция на вектор.
Проекция на ось OX Проекция на ось OY Проекция на вектор
Если направление вектора A’B’ совпадает с направлением оси OX, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением оси OY, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора A’B’ совпадает с направлением вектора NM, то проекция вектора A’B’ имеет положительный знак.
Если направление вектора противоположно с направлением оси OX, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением оси OY, то проекция вектора A’B’ имеет отрицательный знак.
Если направление вектора A’B’ противоположно с направлением вектора NM, то проекция вектора A’B’ имеет отрицательный знак.
Если вектор AB параллелен оси OX, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен оси OY, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB параллелен вектору NM, то проекция вектора A’B’ равна модулю вектора AB.

Если вектор AB перпендикулярен оси OX, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен оси OY, то проекция A’B’ равна нулю (нуль-вектор).

Если вектор AB перпендикулярен вектору NM, то проекция A’B’ равна нулю (нуль-вектор).

1. Вопрос: Может ли проекция вектора иметь отрицательный знак. Ответ: Да, проекций вектора может быть отрицательной величиной. В этом случае, вектор имеет противоположное направление (см. как направлены ось OX и вектор AB)
2. Вопрос: Может ли проекция вектора совпадать с модулем вектора. Ответ: Да, может. В этом случае, векторы параллельны (или лежат на одной прямой).
3. Вопрос: Может ли проекция вектора быть равна нулю (нуль-вектор). Ответ: Да, может. В этом случае вектор перпендикулярен соответствующей оси (вектору).

Пример 1 . Вектор (рис. 1) образует с осью OX (она задана вектором a) угол 60 о. Если OE есть единица масштаба, то |b|=4, так что .

Действительно, длина вектора (геометрической проекции b) равна 2, а направление совпадает с направлением оси OX.

Пример 2 . Вектор (рис. 2) образует с осью OX (с вектором a) угол (a,b) = 120 o . Длина |b| вектора b равна 4, поэтому пр a b=4·cos120 o = -2.

Действительно, длина вектора равна 2, а направление противоположно направлению оси.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные