Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Кафедра ЭТТ. Дисциплина «Основы технологии электронной компонентной базы»

Лабораторная работа № 1. Особенности нанесения пленок

При термовакуумном испарении

Цель работы : ознакомление с особенностями генерации и распространения потока молекул в вакууме и c распределением толщины пленки по поверхности подложки большой площади при термовакуумном испарении.

Основные понятия и соотношения

При термовакуумном испарении поток атомов или молекул вещества генерируется при нагревании материала в вакууме до температуры, близкой или превышающей его температуру плавления.

Испарениес поверхности жидкой фазы наиболее часто используется в технике. Для объяснения механизма процесса было предложено несколько моделей. В простейшей из них жидкая фаза (расплавленный материал) рассматривается как система осцилляторов, поверхностные молекулы которой связаны с определенной энергией испарения. Предполагается, что переход в газообразную фазу происходит тогда, когда энергия колебаний молекул на поверхности равна или превосходит энергию испарения. Предполагается также, что все молекулы поверхности имеют одну и ту же энергию связи и равную вероятность испарения. Вследствие интерференции колебаний осцилляторов становится возможным испарение отдельных молекул.

В усовершенствованной статистической модели состояние молекул на поверхности описывается максвелловским распределением по энергии и пространственным распределением, связывающим смещение молекул от равновесного положения с их потенциальной энергией. Испарение молекулы происходит тогда, когда она смещается на такое расстояние, что ее потенциальная энергия становится равной энергии испарения.

Экспериментальные исследования показали, что статистическая модель достаточно хорошо применима к жидкостям, испарение которых происходит за счет обмена одиночных атомов с одноатомным паром (ртуть, калий, бериллий и ряд других металлов). Аналогично ведут себя и некоторые органические жидкости, молекулы которых имеют сферическую симметрию и малые энтропии испарения (например, четыреххлористый углерод – CCl 4).

В веществах, молекулы которых имеют различные степени свободы в конденсированном и газообразном состояниях, при испарении должно происходить изменение не только поступательного движения, но и внутренней энергии молекул. В тоже время статистически маловероятно, что молекула на поверхности получает в один и тот же момент как кинетическую, так и потенциальную энергии, необходимые для испарения при термодинамическом равновесии. Более вероятно, что молекула получает вначале необходимую кинетическую энергию, а затем должна до момента испарения получить квант внутренней энергии.

Полагают, что среди различных видов внутренней энергии молекул, наибольшее влияние на вероятность испарения оказывает энергия вращения. Это подтверждается тем, что время релаксации, необходимое для получения вращательной степени свободы молекулой с добавленной кинетической энергией, больше, чем для других процессов. Таким образом, ограничение испарения происходит вследствие потери одной степени свободы, которая уменьшает число возможных состояний для молекул в жидкой фазе. Такая форма ограничения фазового перехода называется ограничением по энтропии.

Испарение с ограничением по энтропии подтверждается для жидкостей с малыми полярными молекулами, которые испаряются с невозмущенных поверхностей (бензин, хлороформ, этанол, метанол и др.). Некоторые органические жидкости имеют вращательную степень свободы и в активированном состоянии.

При испарении металлов основным видом частиц в газовой фазе являются одиночные атомы металла и лишь небольшую часть (меньше 0,1%) составляют двухатомные молекулы. Для некоторых элементов (C, S, Se, Te , P, As, Sb) пары состоят из многоатомных молекул.

Испарение с поверхности твердой фазы , называемое сублимацией, объясняется наличием на поверхности материала моноатомных ступенек и состояний с различным числом атомов в первом и последующем слое. Так как силы связи, действующие на данный атом со стороны соседних атомов, являются аддитивными (складываются), то значения энергии испарения для атомов в различных состояниях будут различными. В первую очередь испаряются атомы с наименьшим числом связей (соседей), что создает благоприятные условия для испарения других атомов.

При испарении материалов сложного состава необходимо учитывать фракционирование вещества и возможность диссоциации. Весьма важно учитывать особенности взаимодействия испаряемого материала с материалом испарителя.

Пролет частиц вещества от испарителя до поверхности подложки сопровождается их столкновениями между собой и с молекулами остаточных газов. Для уменьшения такого взаимодействия испарение производят при давлении насыщенных паров вещества не более 10 -2 Торр, а остаточных газов – не более 10 -4 – 10 -5 Торр.

Конденсация атомов (молекул) вещества происходит после пролета материала до поверхности подложки. Она зависит от соотношения свободных энергий потока частиц и поверхности. Послойный режим роста пленок (режим Франка – Ван-дер-Мерве) реализуется, если энергия связи атомов осаждаемого вещества с подложкой больше энергии связи атомов друг с другом.

Островковый режим Фольмера-Вебера реализуется тогда, когда атомы вещества связаны друг с другом сильнее, чем с подложкой. Маленькие зародыши растут, превращаясь в большие островки конденсированной фазы. После заполнения промежутков (каналов) между островками, они сливаются и образуют сплошную пленку.

При промежуточном режиме Странского-Крастанова вначале происходит послойный рост одного-двух монослоев. Затем начинается рост островков на их поверхности. При достаточном размере островков они сливаются с образованием сплошной пленки. Одной из причин такого поведения является изменение параметра решетки при заполнении очередного монослоя.

Расчет скорости испарения

Массаиспаряемого вещества , попадающего на элементарную сферическую площадку с испарителя малой площади , определяется следующим соотношением:

, (1)

где – время испарения; – угол между нормалью к поверхности испарителя и направлением к выбранной точке подложки; – радиус сферы, на которой расположена элементарная сферическая площадка с измеряемым количеством вещества .

Скорость испарения вещества в вакууме рассчитывается по формуле:

, (2)

где – скорость испарения, г·см –2 ·с –1 ; – атомный (молекулярный) вес вещества, – давление его насыщенного пара, Торр; – температура, К.

Давление насыщенных паров вещества в объеме испарения определяется соотношением:

, (3)

в котором величины и характеризуют свойства испаряемого материала. Для всех материалов таблицы Менделеева = 8,8 (для Si–10,2); = / 4,576, К; – теплота парообразования, кал/моль. Значения , плотности и температуры плавления ряда металлов приведены в таблице 1.

Для плоской подложки, поверхность которой расположена произвольно относительно поверхности плоского испарителя конечных размеров малой площади, уравнение (1) трансформируется к виду:

, (4)

где - угол между нормалью к поверхности подложки и направлением испарения.

Таблица 1

При практическом применении метода нанесения пленок важно не количество испаренного материала, а толщина получаемых пленок и ее распределение по поверхности подложки.

Расчет толщины пленок

Указанные закономерности распределения испаренного вещества приводят к тому, что распределение толщины пленки по поверхности подложки может иметь сложный характер. Поскольку для элементарной площадки подложки количество материала (где – плотность испаряемого материала), толщина пленки для произвольно расположенной подложки определяется соотношением:

(5)

В этом соотношении положение точки подложки, в которой рассчитывается толщина пленки, определяется тремя величинами .

Для плоского поверхностного испарителя малой площади и плоской подложки, расположенной на расстоянии параллельно поверхности испарителя (рис. 1), толщина пленки определяется соотношением:

, (6)

где ; – координата вдоль поверхности подложки (расстояние от

Рисунок 1. Расположение подложки относительно испарителя

центра подложки в точке А до точки Б , в которой определяется толщина пленки); – нормированное значение координаты; – полное количество испаренного вещества.

Наибольшая толщина пленки получается в точке А подложки, а относительное изменение толщины пленки для разных точек подложки в этом случае имеет вид:

, . (7)

Точечный испаритель представляет собой сферу, размеры которой пренебрежимо малы по сравнению с расстоянием до поверхности подложки и её размерами. С такого испарителя в элементарный телесный угол испаряется количество вещества . Если нанесение плёнки производится на произвольно расположенную плоскую подложку, то, как следует из рисунка, основные соотношения для точечного испарителя принимают следующий вид:

; . (8)

В таблице 2 приведена зависимость относительной толщины от х/h для точечного и поверхностного испарителя.

Таблица – Зависимость равномерности толщины от х/h

х/h 0,25 0,5 0,75
(d/d0)п 0,83 0,64 0,41 0,25 0,04
(d/d0)т 0,88 0,71 0,51 0,35 0,09

Для стандартных размеров подложки 60х48 мм при расстоянии испаритель – подложка в 200 мм неравномерность толщины плёнки составляет около 10 %. А в современных аналого-цифровых преобразователях требования к точности резисторов (разброс по сопротивлениям) составляет не более 0,05 %. Для обеспечения нужной равномерности при нанесении плёнок на подложки как больших, так и малых размеров применяют различные способы:

Использование испарителей большой площади,

Использование кольцевых испарителей,

Применение большого числа одновременно работающих испарителей,

Перемещение подложек по сложной (планетарной) траектории,

Смещение испарителя на строго определённое расстояние относительно центра вращающейся подложки,

Применение вращающихся диафрагм специальной формы при неподвижной подложке.

При применении плоского дискового испарителя конечных размеров радиуса R соответствующие выражения для толщин принимают окончательный вид:

, . (9)

Для кольцевого испарителя радиуса R, центр которого совпадает с центром плоской подложки расположенной параллельно плоскости испарителя, выражение для толщины пленки принимает следующий вид:

. . (10)

Наиболее часто на практике находит применение вариант со смещением испарителя относительно центра вращающейся подложки. Для этого варианта с испарителем малой площади соответствующие выражения принимают вид, аналогичный формулам для кольцевого испарителя. Отличие заключается в том, что вместо радиуса тонкого кольца R в формулу входит расстояние l от испарителя до оси вращения подложки.

. . (11)

Использование вращающихся диафрагм (заслонок) специальной формы основано на дополнительном регулировании количества материала, поступающего от испарителя на тот или иной участок подложки. Очень важно, чтобы центр вращения диафрагмы совпадал с центром испарителя и подложки. Чтобы снизить нежелательное уменьшение толщины, поток испаряемого вещества в наиболее удаленных точках подложки не прекрывается. По мере приближения к геометрическому центру подложки край заслонки должен представлять собой дугу возрастающей длины, так, чтобы длительность прерывания потока на любом данном расстоянии обеспечивала уменьшение скорости осаждения в данном месте до величины скорости в наиболее удаленных точках. Контуры заслонок для однородного покрытия представляют собой спирали, точные линии которых для различных условий получают расчетом на компьютере. Применение вращающихся диафрагм позволяет получить равномерность толщины в пределах долей процента. Недостатком метода является избыточный расход материала, так как перекрывается и оседает на поверхности заслонки основная часть испаряемого материала.

Задание к работе

При домашней подготовке необходимо для заданного материала и толщины пленки испаренного материала определить температуру поверхностного испарителя малой площади, при которой наибольшая толщина пленки d 0 будет равна заданной. Для расчета используются зависимости (2), (3), (7), данные таблицы и вариантов заданий.

При работе в лаборатории необходимо в компьютерном эксперименте получить следующие зависимости:

Распределение абсолютной толщины d(x) для заданной d 0 для поверхностного малой площади, дискового, кольцевого и смещенного относительно центра вращающейся подложки испарителей. (Для трех последних типов испарителя предварительно необходимо подобрать температуру, обеспечивающую одну и ту же толщину d 0 при х=0);

Относительное отклонение толщины пленки заданного материала в зависимости от расстояния x по поверхности подложки при заданной d 0 для исследуемых испарителей;

Для заданного d 0 и размера подложки 100х150 мм 2 выбрать тип испарителя, все его характеристики (кроме F) и расстояние h, обеспечивающие равномерность толщины пленки не хуже 2 %.

Примечание : необходимые для расчета дополнительные сведения приведены в перечне «Варианты задания».

Требования к отчету

Отчет составляется индивидуально на листах формата А4. При домашней подготовке необходимо изучить содержание работы, провести расчет температуры для своего варианта задания, а основные аналитические соотношения и последовательность расчета внести в заготовленный отчет. Подготовленный для защиты отчет должен содержать:

Теоретическую часть и результаты расчета (домашнюю подготовку),

Эскизы конфигурации систем испарения,

Расчетные формулы,

Последовательность расчетов и распределение абсолютной и относительной толщины по диагоналям подложки,

Анализ результатов,

Ответы на контрольные вопросы.

6. Контрольные вопросы

Чем определяется максимально возможная толщина пленки при термовакуумном испарении?

Какие соотношения связывают толщину пленки с температурой испарителя?

Как испаряют порошкообразные материалы?

Какие типы испарителей применяют для испарения порошковых материалов?

Что такое сублимация?

Какие требования предъявляются к материалам испарителей?

При каких условиях происходит послойный рост пленки при испарении?

Как происходит испарение с поверхности твердой фазы?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

Количественно испарение характеризуется массой воды, которая испаряется в единицу времени с единицы поверхности. Эта величина называется скоростью испарения. В системе СИ она выражается в кг/(м 2. с), в СГС – в г/(см 2. с).

Скорость испарения увеличивается с повышением температуры испаряющей поверхности. В процессе испарения молекулы воды, которые переходят в пар, тратят часть своей энергии на преодоление сил сцепления и на работу расширения, связанную с увеличением объема жидкости, которая переходит в газообразное состояние. В результате средняя энергия молекул, которые остаются в жидкости, уменьшается, и жидкость охлаждается. Для продолжения процесса испарения необходимо дополнительное тепло, которое называется теплотой испарения. Теплота испарения уменьшается с увеличением температуры испаряющей поверхности.

Если испарение проходит с поверхности воды, то эта зависимость выражается формулой:

Q = Q 0 - 0,65 . t, (5.9)

где Q - теплота испарения, Дж/г;

t – температура поверхности, которая испаряет, 0 С;

Q 0 = 2500 Дж/кг.

Если испарение проходит из поверхности льда или снега, то:

Q = Q 0 - 0,36 . t, (5.10)

Для практических целей скорость испарения выражается высотой (в мм) слоя воды, которая испаряется за единицу времени. Слой воды, высотой 1мм, который испарится с площади 1 м 2 , отвечает ее массе в 1 кг.

Согласно закону Дальтона, скорость испарения W в кг/(м 2. с) прямо пропорциональная дефициту влажности, вычисленному по температуре испаряющей поверхности, и обратно пропорциональная атмосферному давлению:

где Е 1 - упругость насыщения, взятая по температуре испаряющей поверхности, гПа;

е - упругость пара в окружающем воздухе, гПа;

Р – атмосферное давление, гПа;

А – коэффициент пропорциональности, который зависит от скорости ветра.

Из закона Дальтона видно, что чем больше разность (Е 1- е), тем больше скорость испарения. Если поверхность, которая испаряет, теплее воздуха, то Е 1 большее, чем упругость насыщения Е при температуре воздуха. В таком случае испарение продолжается даже тогда, когда воздух насыщен водяным паром, то есть если е=Е (но Е

Наоборот, если испаряющая поверхность холоднее воздуха, то при довольно большой относительной влажности может оказаться, что Е 1

Зависимость скорости испарения от атмосферного давления обусловлена тем, что в неподвижном воздухе молекулярная диффузия усиливается с уменьшением внешнего давления: чем оно меньшее, тем легче молекулам оторваться от испаряющей поверхности. Однако атмосферное давление у поверхности земли колеблется в сравнительно небольших пределах. Поэтому, оно не может существенным образом изменять скорость испарения. Но его приходится учитывать, например, при сравнении скоростей испарения на разных высотах в горной местности.

Скорость испарения зависит от скорости ветра . С увеличением скорости ветра увеличивается турбулентная диффузия, от которой в значительной мере зависит скорость испарения. Чем интенсивнее турбулентное перемешивание, тем быстрее протекает перенос водяного пара в окружающую среду. Если воздух переносится с суши на водоем, то скорость испарения с водоема увеличивается, так как в воздухе, который натекает на сравнительно более сухую поверхность, дефицит влажности больше, чем он над водоемом. При переносе воздуха с водной поверхности на сушу скорость испарения постепенно уменьшается в результате уменьшения дефицита влажности в воздухе, который находится над водой. На скорость испарения с поверхностей морей и океанов влияет их соленость, так как упругость насыщения над раствором меньше, чем над пресной водой.

На испарение из поверхности грунта значительно влияют физические свойства, состояние деятельной поверхности, рельеф и др. факторы. Гладкая поверхность испаряет меньше, чем шероховатая, так как над ней слабее развито турбулентное перемешивание, чем над шероховатой поверхностью. Светлые почвы при прочих равных условиях испаряют меньше, чем темные, так как они меньше нагреваются. Рыхлые почвы с широкими капиллярами испаряют меньше, чем плотные почвы с узкими капиллярами. Объясняется это тем, что по узким капиллярам вода поднимается ближе к поверхности почвы, чем по широкой. Скорость испарения зависит от степени увлажнения почвы: чем суше почва, тем медленнее происходит испарение. На скорость испарения влияет рельеф местности. На возвышенностях, над которыми имеет место интенсивное турбулентное перемешивание, испарение происходит быстрее, чем в низинах, балках и долинах, где воздух менее подвижен.

На скорость испарения влияет растительный покров. Он значительно уменьшает испарение непосредственно с поверхности почвы. Однако сами растения испаряют много влаги, которые берут из почвы. Испарение влаги растениями является физико-биологическим процессом и называется транспирацией.

Полная отдача водяного пара с определенной поверхности с одинаковым растительным покровом называется эвапотранспирацией. Она включает испарение из поверхности земли и от растений.

Испаряемость – это испарение, максимально возможное в данной местности с определенной деятельной поверхности при достаточном количестве влаги при существующих здесь метеорологических условиях.

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

СКОРОСТЬ ИСПАРЕНИЯ. Количество воды (толщина слоя воды), испаряющейся за единицу времени с единицы поверхности. С. И. с открытой водной поверхности пропорциональна величине дефицита влажности при температуре испаряющей поверхности Е3- е (где Е - упругость насыщения при температуре испаряющей поверхности), обратно пропорциональна атмосферному давлению и зависит также от скорости ветра. Кроме того, она зависит от размеров и формы испаряющей поверхности. См. закон Дальтона.[ ...]

Скорость испарения воды растениями определяется в основном теми же факторами, что и скорость испарения с поверхности почвы, но благодаря своим регулирующим системам растения могут экономить воду, уменьшая транспирацию. Однако общий расход воды на транспирацию очень велик. На образование 1 кг сухого вещества растения тратят от 300 до 800 кг воды.[ ...]

Скорость испарения в факеле сильно зависит от степени распыливания топлива, которая влияет на величину поверхности испарения и количество испаряющегося топлива. С уменьшением размеров капли сокращается время ее прогрева и повышается скорость испарения.[ ...]

Скорость сушки тем больше, чем меньше етенох клеток проходит частица воды па пути изнутри куска древесины к его поверхности. Длинные оси клеток параллельны оси ствола или ветви, из которых взят кусок древесины. Поэтому на пути, параллельном оси куска, встречается всего меньше стенок клеток, преграждающих путь, н скорость испарения влаги с поперечного разреза гораздо больше, чем с продольного радиального или тапгентального раскола. Больше всего препятствует сушке кора.[ ...]

Обычно подразумевается испарение воды: поступление водяного пара в атмосферу вследствие отрыва наиболее быстродвижу-щихся молекул с поверхности воды, снега, льда, влажной почвы, капелек и кристаллов в атмосфере. Отрываются те молекулы, скорость которых выше средней скорости движения молекул при данной температуре и достаточна для преодоления сил молекулярного притяжения (сцепления). С возрастанием температуры число отрывающихся молекул, стало быть и И., растет. Одновременно молекулы водяного пара, находящегося над испаряющей поверхностью, частично возвращаются в жидкую или твердую фазу. Фактически наблюдаемое И. есть разность двух потоков молекул - отрывающихся от испаряющей поверхности и возвращающихся к ней. Чистая потеря воды путем испарения зависит от близости упругости пара над испаряющей поверхностью к насыщению. При насыщении И. прекращается, т. е. оба потока молекул уравновешиваются. При И. затрачивается при температуре 0° для воды 597 кал тепла и для льда 677 кал на 1 г. Если тепло не подводится извне, то испаряющее тело охлаждается и процесс замедляется. Ср. испаряемость, насыщение, скорость испарения, закон Дальтона.[ ...]

Скорость испарения с водной поверхности возрастает с увеличением ее температуры, дефицита упругости пара над ней и скорости ветра. Влияние ветра вызвано тем, что он относит в сторону пар, поступающий в приводный слой атмосферы, и усиливает турбулентное перемешивание, уносящее пар вверх и заменяющее увлажнившийся воздух более сухим. Скорость испарения несколько увеличивается и с уменьшением атмосферного давления. Наконец на скорость испарения с водной поверхности влияет также прямая солнечная радиация, прогревающая слой воды на глубину, зависящую от прозрачности воды.[ ...]

Скорость испарения с поверхности почвы в первую очередь зависит от ее температуры, а также от влажности воздуха, скорости ветра, содержания воды в почве, ее физических свойств, состояния поверхности и наличия растительности. С увеличением влажности почвы при прочих равных условиях испарение возрастает. Темные почвы сильнее нагреваются солнцем и поэтому испаряют больше воды, чем светлые. Растительность, затеняя почву от солнечных лучей и ослабляя перемешивание воздуха, значительно уменьшает скорость испарения с поверхности почвы.[ ...]

Несколько более летуч, чем октаметил.[ ...]

Скорость (слой) испарения обычно прямо пропорциональна величине Е [Панин, 1987], поэтому среднегодовая скорость испарения оказывается сильновозрастающей функцией амплитуды температурных колебаний поверхности моря.[ ...]

Скорость испарения определяется количеством жидкости, испаряющейся в единицу времени, и зависит от ряда факторов, главные из которых упругость паров, фракционный состав и температурные изменения. Большое значение имеют также площадь испарения, толщина слоя жидкости, коэффициент диффузии паров в воздухе.[ ...]

Скорость испарения УВ зависит от ряда факторов - от упругости паров, фракционного состава температур. Различают потери от больших дыханий, от обратного выдоха и от вентиляции. Для ДНС эти потери составляют около 80 т/год. Учитывая возможные погрешности расчетного метода, весьма актуальными представляются данные “ТатНИПИнефти”, полученные непосредственными замерами на РВС-2000 с температурой нефти 29-25 °С . Дыхательная арматура резервуара была оснащена двумя дыхательными и двумя предохранительными клапанами НКМД-350 и КПР 1-350. Количество выделяемого из нефти газа составляло от 0,01 до 0,28 м3/м3. Состав газа характеризовался следующими данными (объем, %): Н28 - 0,30; С02 - 13,27; СН4 - 40,31; С2Н6 - 10,03; С3Н8 - 20,49; г-СН2 - 4,47; и-С4Н10 - 7,78; г-С5Н12 - 1,53; и-С5Н12 - 1,22; £С6+ высшие - 0,6.[ ...]

Скорость испарения во всех трех направлениях неодинакова: наименьшая - в радиальном направлении и наибольшая - по длине волокон.[ ...]

Скорость испарения жидкого хлора в стальной таре при температуре помещения 18° С примерно составляет: из одного баллона 0,5-0,7 кг/ч, с 1 м2 поверхности бочки 2,5-3,0 кг/ч; увеличение газоподачи из баллона до 10 кг/ч достигается путем обогрева водой с температурой выше 30-40° С; еще больший съем хлора - 40 кг/ч - получают в специальных испарителях .[ ...]

Кинетическое испарение является лимитирующим при оценке суммарной скорости испарения, когда его скорость обусловлена только скоростью «отрыва» молекул от поверхности (например, при испарении в вакуум или при сильном обдуве мелких капель). Иначе, лимитирующим является диффузионное испарение (характерно для поршневых ДВС), скорость которого определяется особенностью процессов тепломассопереноса между поверхностью испарения и окружающей средой.[ ...]

Переход от периода испарения свободной влаги из полос)и клеток к периоду испарения связанной влаги, т. е. к периоду внутренней диффузии, не всегда можно заметить, особенно если куски высушиваемой древесины имеют разные размеры. В этом случае скорость испарения свободной влаги из крупных кусков, находящихся в центре вагонетки, начинает уменьшаться значительно ранее, еще до достижения первой критической точки. Уменьшение скорости сушки, при удалении свободной влаги из полости клеток, наблюдается при понижении содержания в древесине влаги от 30 до 23%. Таким образом, этот период можно назвать промежуточным или переходным. В начале его, когда значительная часть поверхности древесины еще остается влажной, основным условием, определяющим скорость сушки, является диффузия пара через газовую пленку; в конце этого периода, когда почти вся поверхность древесины становится сухой, скорость сушки определяется внутренней диффузей.[ ...]

Напротив, потери на испарение, игравшие решающую роль в умеренных и жарких поясах, отходят на второй план в полярных морях, где упругость насыщенного пара весьма мала, состояние воздуха близко к насыщению, а потому влажный дефицит не может достичь сколько-нибудь значительной величины. Ввиду малого значения этой составляющей мы не внесем заметных погрешностей в вычисление теплового баланса, если допустим, что скорость испарения с поверхности льда при прочих равных условиях приблизительно такова, как с поверхности воды.[ ...]

В связи с этим измерения скорости испарения на корабле стали производиться только после того, как были найдены невесовые способы определения количества испарившейся воды в приборах на палубе.[ ...]

Из-за наличия зависимости скорости испарения от толщины прогреваемого слоя воды возможно генерирование тепловой неустойчивости. Действительно, пусть площадь зеркала испарения очень слабо зависит от глубины водоема. Тогда малое падение уровня, увеличив амплитуду температурных колебаний, вызовет рост испарения, который будет способствовать еще большему падению уровня и увеличению температурных колебаний и т.д. Таким образом, тепловые процессы в море создают механизм положительной обратной связи, конкурирующий с механизмом отрицательной обратной связи (изменением площади зеркала испарения). Вследствие их взаимодействия возникает новый физический механизм поведения уровня моря. Отметим, что на рост амплитуды колебаний температуры воды при уменьшении размеров моря указывали такие известные исследователи теплофизики Арала и Каспия, как B.C. Самойленко, Е.Г. Архипова, М.С. Потайчук [Каспийское море, 1986].[ ...]

Обычно во время наблюдений скорость ветра непрерывно меняется и точки кривой Ф - яр (/) не могут быть приведены к одной какой-нибудь скорости ветра, так как зависимость между нею и скоростью испарения только лишь подлежит определению. Чтобы обойти такое серьезное, на первый взгляд, затруднение, достаточно при построении кривых охлаждения брать в каче стве независимой переменной не время, а путь Ь, пролетаемый за время опыта частицами воздуха, обтекающего испаритель. Отсчитывать его можно непосредственно по анемометру.[ ...]

[ ...]

Среди показателей, определяющих скорость испарения, основным является давление насыщенных паров, которое зависит от температуры и соотношения паровоздушной и жидкостной фаз нефтепродуктов. С увеличением доли легких фракций повышается давление насыщенных паров нефтепродуктов и растут потери от испарения. В связи с возросшими требованиями к чистоте воздушного бассейна точность определения потерь от испарения приобретает важное значение.[ ...]

Если пролитый продукт имеет достаточно высокую скорость испарения, можно удержать его на изолированном участке и дать ему безвредно испариться. Если пролитый продукт является огнеопасным, его нельзя выпаривать или диспергировать, разбавляя водой, его можно удержать нанесением на поверхность пленкообразующей пены. Пена уменьшает испарение продукта до минимума, поэтому сами жидкости должны быть удалены механическим способом.[ ...]

Для оценки возможности пакетной передачи заряда при испарении воды было исследовано оценка влияние давления на процесс разделения электрического заряда (давление в данном случае выступает в качестве фактора усиления скорости испарения жидкости).[ ...]

В зависимости от вида растворителя, концентрации раствора и скорости испарения величина и форма кристаллов 4,4 -ДДТ могут несколько изменяться.[ ...]

Этот вывод Стефана совсем неосновательно переносится иногда на случай испарения, происходящего под действием ветра, чем и объясняется ошибочное мнение, укоренившееся у некоторых метеорологов,- будто размеры испарителя влияют на результаты наблюдения скорости испарения с единицы поверхности.[ ...]

Так как коэффициент диффузии В весьма мал, то весьма малой оказывается и скорость испарения Е, управляемого диффузией. Она практически равна нулю по сравнению со скоростью испарения при самом слабом ветре.[ ...]

В двигателях с непосредственным впрыском бензина время, отводимое на процесс испарения, значительно меньше. Оно определяется моментом от начала впрыска до воспламенения и составляет 0,02-0,03 с. В такте впуска факел распыленного бензина омывается потоком поступающего воздуха. Значительная скорость вихревого движения воздуха, повышенная температура остаточных газов и низкое давление в камере сгорания являются благоприятными факторами, обеспечивающими высокую скорость испарения бензина, перемешивания его паров с воздухом. Экспериментально установлено, что в такте впуска испаряется около 80% бензина.[ ...]

Наиболее высокие концентрации 50 и 5 80, по-видимому, обусловлены прежде всего повышенной скоростью испарения снега, которая может происходить над подземными коммуникациями, выделяющими тепло, вблизи проезжей части улиц или на открытых площадках, где солнечная инсоляция проявляется сильнее. Так, самые высокие концентрации 50 и 5180 установлены в сквере у Павелецкого вокзала вблизи перехода между станциями метрополитена.[ ...]

В качестве источника тяжелого газа в основной серии экспериментов рассматривалось стационарное испарение паров жидкого азота с поверхности их разлива. Скорость испарения принималась равной 0,05 м/с, поверхность испарения 31,5 мг, температура паров азота в источнике принималась равновесной 77 К.[ ...]

Испаряемость нефтепродуктов - их способность переходить из жидкой фазы (масляной фракции) в паровую; скорость испарения зависит от состава, площади испарения, типа емкости, в которой они находятся, скорости движения воздуха, давления насыщенных паров нефти или нефтепродукта. Давление насыщенных паров наиболее распространенных нефтепродуктов составляет у автобензинов - до 700, у авиабензинов - до 360, керосина тракторного - до 10 мм рт. ст.[ ...]

В этом процессе основное внимание уделялось управлению ростом кристаллов льда. При тщательном контроле скорости испарения бутана удалось создать условия, при которых в переохлажденном рассоле предотвращалось образование большого числа центров кристаллизации.[ ...]

Используя приведенные выше соотношения и зависимость (тв) , можно получить приближенное значение массовой скорости испарения тд с внешней поверхности газоконденсата в зависимости от скорости движения и температуры воздушной среды, величины лучистых потоков д£ , д и начальной температуры газоконденсата Т0.[ ...]

Передвижение воды и питательных веществ вверх по ксилеме у высших растений частично связано с транспирацией, т. е. испарением влаги листьями через многочисленные устьица. По мере потери воды клетками недостаток диффузионного давления притягивает воду из элементов ксилемы, которые образуют крупные многочисленные сплошные трубки (сосуды) от корней до листьев. Таким образом, натяжение передается через весь столб к клеткам корня и приводит к усилению поглощения воды. Скорость транспирации зависит от степени раскрытия устьиц и от таких окружающих факторов, как температура и влажность воздуха, которые влияют на физическую скорость испарения воды. Замыкание и размыкание устьиц является механическим процессом, регулируемым тургором замыкающих клеток (см. рис. 27).[ ...]

Заугольников С. Д., Кочанов М. М., Лойт А. О., Ставчинский И. И. Новые расчетные методы определения давления насыщенных паров и скорости испарения вредных веществ в гигиенических исследованиях. - Гиг. труда, 1976, № 2, с. 27.[ ...]

Как следует из приведенных данных, потери при наливе открытой струей в два раза выше потерь при нижнем наливе и наливе под уровень продукта. Скорость испарения нефтепродуктов при наливе зависит от ряда факторов, включающих давление насыщенных паров жидкого продукта, количества и концентрации паров в цистерне до налива, метода налива.[ ...]

Подчеркнем, что нелинейные зависимости теплофизических свойств суши от ее влажности - наиболее существенные факторы теплопередачи в почве. Поэтому скорость испарения, пропорциональная разности Е-Ех (Е - упругость насыщения на некоторой высоте над поверхностью суши), оказывается зависящей от влагозапасов суши причем с ростом ¥ уменьшаются А и, соответственно, Е. Таким образом, возникает механизм положительной обратной связи: уменьшение испарения ведет к увеличению влагозапасов, что уменьшает амплитуду температурных колебаний и испарение и т.д.[ ...]

Суточный ход относительной влажности зависит от упругости пара и упругости насыщения. С повышением температуры испаряющей поверхности увеличивается скорость испарения и, следовательно, увеличивается е. Но Е растет значительно быстрее, чем е, поэтому с повышением температуры поверхности, а с ней и температуры воздуха относительная влажность уменьшается [см. формулу (5.1)]. Дневное ее понижение особенно резко выражено над континентами в летнее время, когда в результате турбулентной диффузии пара вверх е у поверхности уменьшается, а вследствие роста температуры воздуха Е увеличивается. Поэтому амплитуда суточных колебаний относительной влажности на материках значительно больше, чем над водными поверхностями.[ ...]

Несмотря на то, что ХОП имеют низкое давление насыщенных паров, они испаряются с поверхности почвы и воды в воздух. При концентрации ДДГ в почве 10 мкг/г и температуре 30 °С средняя скорость испарения составляет 6,3 106 - 9 10 5 мг/(см2 ч).

Хотя летучесть диоксинов сравнительно незначительна, они могут переноситься воздушными массами в виде аэрозольных частиц в “сверхвысоких” концентрациях 87] Более интенсивно испаряются с поверхности воды ПХБ. Значения скорости испарения при 100 °С колеблются в пределах 0,05-0,9 мгУ(см2 ч).[ ...]

Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с которой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени.[ ...]

Первый период сушки начинается тогда, когда образовавшийся из влаги пар проникает через всю толщу бумажного полотна и уходит наружу. Этот период (участок ВС) характеризуется удалением свободной влаги из бумажного полотна. Он идет с постоянной скоростью испарения со всей поверхности бумажного полотна при практически постоянной температуре, равной температуре испарения воды при данных барометрических условиях (/м не более 100°С), независимо от температуры поверхности сушильных цилиндров. Продолжительность первого периода сушки длится 50-65 % от общей продолжительности сушки бумаги.[ ...]

Важнейшей характеристикой климата Земли является среднегодовая температура приземного слоя атмосферы, складывающаяся как следствие энергетического баланса Земли. Температура земной поверхности при заданном, потоке солнечного излучения определяется скоростью испарения воды с поверхности Земли, концентрациями атмосферных газов, в основном парами воды и диоксида углерода, создающих парниковый эффект, и величиной альбедо-коэффициентом отражения солнечного излучения атмосферой и земной поверхностью.[ ...]

Внутригодовой ход температуры поверхности моря можно представить в виде суммы среднегодовой температуры поверхности и отклонения от этой величины, которое характеризуется амплитудой. Ввиду нелинейной зависимости влагосодержания от температуры среднегодовая величина слоя испарения оказывается не только функцией среднегодовой температуры поверхности, но и амплитуды температурных колебаний. Расчеты показали, что скорость испарения - сильно возрастающая нелинейная функция этой амплитуды.[ ...]

Смеси сероуглерода с четыреххлористым углеродом значительно более безопасны в пожарном отношении, чем чистый сероуглерод. Применяют их для борьбы с вредителями запасов изредка и притом в небольших количествах, в порядке производственных опытов. Причиной этого является неодинаковая скорость испарения компонентов смеси в воздухе, вследствие чего в отдельных местах могут создаваться огнеопасные концентрации паров сероуглерода. Поэтому даже при газации смесями необходимо принимать те же меры предосторожности от пожара или взрыва, как и при пользовании чистым сероуглеродом. Кроме того, при применении смеси стоимость обработки намного возрастает, и приходится работать со значительно большими количествами фумиганта, что усложняет и удорожает газовое обеззараживание.[ ...]

Суспензии указанных концентраций действуют токсически на яйца клещей и вызывают гибель некоторой части взрослых личинок и половозрелых клещей, а также гибель всех молодых личинок.[ ...]

Величина зазора между поршнем и цилиндром, поршнем и поршневыми кольцами зависит от температуры деталей. Температура, в свою очередь, зависит от частоты вращения, нагрузки, температуры масла и охлаждающей жидкости и других факторов. Частота вращения коленчатого вала, величина зазоров в его подшипниках и давление масла в главной магистрали влияют на количество масла, разбрызгиваемого на стенки цилиндра при вращении вала. Средняя температура масляной пленки влияет на вязкость и скорость испарения масла, находящегося в пленке, и ее толщину. Это лишь главные параметры режима работы двигателя, оказывающие влияние на угар масла.[ ...]

Основными минералами являются кварц, более или менее измененные полевые шпаты и слюды, и песчаники - от кварцитовых до лититовых аренитов, вследствие их низкой до умеренной химической зрелости. Наиболее общие цементы - кремнистый или известковый. В твердом стоке русел может встречаться глинистая галька, которая поступает в результате оползней намывных валов. Глауконит отсутствует. Торф и уголь присутствуют в виде пластов (на пойме) и мелких обломков (в руслах). Карбонатные и железистые конкреции могут формироваться на участках с высокой скоростью испарения (на пойме). Глины в основном каолинитовые, но могут присутствовать и другие их типы, в зависимости от климатических условий и расстояния от источника сноса. В процессе диагенеза, флюиды, циркулирующие в разрезе, могут вступать в реакцию с обломочными нестабильными минералами, результатом чего является глинистая цементация. Кальцитовый цемент также может осаждаться.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные