Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Фенология городских растений

· В городах фенологические явления по срокам и скорости заметно отличаются от обычного их хода для данного района. Хорошо известно, что весенние явления в городе наступают раньше и идут быстрее. Опережение сроков составляет в большом городе несколько дней.

· В природных растительных сообществах травы развиваются и зацветают в четкой фенологической последовательности. В городе же благодаря пестроте «микроусловий» такой четкой фенологической последовательности не существует. Например, над теплокоммуникациями, где прогревается почва и отсутствует снежный покров, растения могут не уходить на зимний покой. У них часто наблюдается развитие генеративных органов осенью и даже зимой (у одуванчика лекарственного – Taraxacum officinale , яснотки белой – Lamium album и пурпурной – L. purpureum , мятлика однолетнего – Poa annua ). Сходные явления наблюдаются у нагретой стены дома, где уже цветет одуванчик и колосится мятлик, а на соседнем затененном газоне еще едва началось прорастание перезимовавших трав. Иногда такое отепляющее действие сказывается даже на развитии отдельных ветвей дерева или куста, расположенных вблизи стены или свисающих над асфальтом. И в результате на одной стороне куста весна наступает на 2–4 дня раньше, чем на другой.

· Раньше и скорее распускаются почки у деревьев на освещенной стороне улицы, чем на затененной, поскольку здесь температура воздуха на 3–5оС выше. Замечено, что в Москве на улицах широтного направления липы, растущие на солнечной стороне, одеваются листьями на 6–8 дней раньше, чем на теневой. Пожелтение и опадение листьев, напротив, наступают гораздо раньше обычных сроков, в том числе и из-за накопления в листьях токсических веществ.

· Поскольку у деревьев часто отмирают верхушечные почки, появляется такое нарушение сезонного развития, как пробуждение спящих почек, из которых развиваются дополнительные («жировые») побеги. Однако эти побеги недолговечны: они не успевают одревеснеть и зимой вымерзают.

· Можно обнаружить интересную особенность, типичную именно для деревьев, живущих в городах. Те из них, которые растут в непосредственной близости от фонарей, не торопятся сбрасывать листву. В отдельных случаях на улицах в конце поры листопада можно даже заметить определенный ритм в чередовании деревьев, уже полностью оголенных и еще облиственных, хотя бы частично; он довольно четко совпадает с расположением уличных фонарей. По-видимому, это связано с вечерним искусственным освещением, которое влияет на фотопериодизм у растений.

Анатомо-морфологические особенности городских растений

Высокая концентрация токсических веществ и жесткие микроклиматические условия приводят к структурным изменениям растений, выражающимся в появлении и усилении ксероморфных черт.

Так, если в кроне лесного дерева ксероморфные черты имеют лишь хорошо освещенные – «световые» верхние листья, а большая часть листвы находится в глубоком затенении, то у городских деревьев как раз «световые» листья преобладают в кроне, поскольку такое затенение со стороны соседей, как в лесу, практически отсутствует. Да и «теневые» листья в кроне городского дерева более ксероморфны, чем «световые» листья в лесу.

У городских деревьев обычно более редкие кроны, короче побеги, меньше площадь листвой поверхности и каждого листа в отдельности. Как показано на примере липы, уже в почке зачатки листьев в городе меньше, чем у загородных деревьев. Это отставание в размерах увеличивается затем в процессе «открытого роста», когда лист выходит из–под защиты почечных чешуй. Поскольку ежегодный прирост побегов у городских деревьев снижен из-за торможения фотосинтеза, в кроне формируются более короткие побеги (у той же липы - на 10–12%, у других видов – до 30–50%). Атмосферные загрязнения могут служить причиной и иных нарушений в росте и ветвлении, например иногда у липы образуются двойные почки. При обилии таких нарушений у деревьев возникают уродливые формы роста, которые получили название “габитус загрязнения”.

Газонные же злаки оказываются низкорослыми даже без скашивания. Так, крупные травы (“верховые злаки” естественных лугов) на газонах шинных и химических заводов не вырастают выше 10–20 см.

Наблюдения за анатомической структурой листа городских растений показали, что уменьшается размер листовой пластинки и ее толщина, возрастает мощность покровных тканей, уменьшается толщина кутикулы, увеличивается число устьиц на единицу поверхности листа и количество жилок.

Поглощение и накопление листом токсических вещество часто приводит к нарушению устьичного и фотосинтетического аппарата: клетки устьиц и околоустьичные клетки деформируются, нарушается внутренняя структура хлоропластов, содержание хлорофилла в листьях растений уличных посадок в 1,5–4 раза меньше, чем у растений в естественных условиях. Кроме того, наблюдается недоразвитие и деформация пыльцы в пыльниках. Показано, что характер изменения пигментов в листьях городских деревьев зависит от газоустойчивости вида. Неустойчивые виды реагируют снижением содержания пигментов, а виды газоустойчивые сохраняют или увеличивают их количество.

Внешний вид городских растений, т.е. их габитус, часто формируется под воздействием обрезки и стрижки . Это не только нарушает ростовые процессы, но также меняет естественное соотношение надземной и подземной частей. Обрезка и стрижка резко сокращают общую листовую фотосинтезирующую поверхность, при этом нефотосинтезирующая часть (ствол, ветви, корни) продолжают расходовать продукцию фотосинтеза на дыхание. Нарушение соотношения между синтезом органических веществ и их расходом на дыхание ослабляет их рост.

У газонных трав, постоянно подвергающихся стрижке, также нарушаются процессы роста и ветвления. Усиливается кущение, появляется множество дополнительных побегов, в результате чего травы растут в виде густой щетки, с гораздо большей плотностью побегов, чем в луговых травостоях. А регулярное удаление фотосинтезирующей поверхности означает невозможность создания и отложения в нужных количествах запасных питательных веществ в подземных органах. Недаром газоны в отличие от естественных лугов требуют со стороны человека постоянной поддержки и возобновления.

Реакция растений на постоянные стрижку и обрезку проявляется в быстром отрастании новых побегов после срезания, усиление фотосинтеза у остающихся обрезков листьев, зависимости этих растений от помощи человека (например, внесение удобрений) и т.д.

Изменения наблюдаются и в строении подземных органов. Так, корневая система городских растений асимметрична: в сторону газона протягиваются более длинные и поверхностные, хорошо разветвленные корни, а с противоположной стороны корни в основном идут вглубь и ветвятся лишь до границы асфальта. У городских деревьев и кустарников вообще угнетено развитие мелких корней, что приводит к уменьшению поглощающей поверхности. Кроме того, наблюдается заглубление основной массы всасывающих корней деревьев на теневой стороне улицы до глубины 30-60 см, а на более прогреваемой солнечной стороне - еще глубже, до 40-80 см, что связано с тепловым режимом почв.

Особенности физиологических процессов городских растений

Фотосинтез. У всех городских растений наблюдается снижение интенсивности фотосинтеза. Так, у 20–25-летних лип в городе фотосинтез примерно вдвое слабее, чем у таких же деревьев в пригородном парке. Снижение фотосинтеза сохраняется длительное время (до полугода), даже при пересадке растений из загазованных районов в незагазованные. В то же время у газонных растений, при постоянном скашивании, наблюдается усиление фотосинтеза в оставшихся частях обрезанных листьев.

Дыхание у городских растений имеет нередко повышенную интенсивность, особенно ночное дыхание у деревьев близ каменных зданий и стен, нагретых днем и отдающих тепло ночью.

Транспирация . Водный режим городских растений – наименее изученная сторона их жизни. И тем не менее у городских растений отмечена повышенная транспирация растений и водный дефицит. Так, если у липы в лесу листья обычно содержат 70–80% воды, то на улицах города в жаркое лето было зафиксировано понижение оводненности листьев до 50–52%. Водный режим осложняется и нарушением целости устьичных клеток: вследствие загрязнения атмосферы они часто теряют способность регулировать ширину устьичных щелей.

Минеральное питание городских растений затруднено прежде всего вследствие недостатка минеральных веществ в почве. Но при этом частое закисление почв ведет к увеличению подвижности многих химических элементов. Кроме того, тяжелые металлы, поглощаемые растениями, такие как цинк, молибден, марганец, медь являются микроэлементами и участвуют в обменных процессах растений. Многие же тяжелые металлы, даже будучи поглощенными (например свинец), не перемещаются в растениях, а концентрируются в корневой системе.

Город, как экосистема, включает целый ряд особых техногенных местообитаний, которые коренным образом отличаются от условий произрастания зональных типов растительности. Поэтому в нем формируются специфические растительные сообщества со своеобразным видовым составом. Из остатков «аборигенной» растительности и элементов окружающей «дикой» флоры в сочетании с привнесенными сорными и культурными видами в каждом городе формируется своеобразный растительный покров как бы без участия человека.

На формирование городской флоры оказывают влияние два противоположно направленных процесса:

1. исчезновение ряда видов, свойственных естественным местообитаниям данного региона;

2. обогащение флористического состава городов.

Исчезновение видов связано с высокой чувствительностью и загрязнением среды, а также высокой чувствительностью к рекреационным нагрузкам. При изучении лихенофлоры окрестностей Санкт-Петербурга отмечено, что из 63 видов, найденных в 1991 году, и из 74 видов, приводимых в списке в 1918 году, общими оказались только 26 видов.

В обогащении флоры городов большую роль играют адвентивные (заносные виды). В начале XIX века в Москве насчитывалось 50 адвентивных видов, а в начале XXI века выявлено 370! Заносные виды составляют в среднем около 30% флоры города, доля их участия максимальна на свалках и железных дорогах. Исследования, проведенные во Владивостоке, Риге, Санкт-Петербурге, Киеве, Варшаве, Цюрихе, Хельсинки, Праге, показали, что наиболее массовыми являются беглые культурные и декоративные растения, которые вытесняют аборигенные виды (например, борщевик Сосновского – Heracleum sosnowskyi , люпин многолистный – Lupinus polyphyllus , галинсога мелкоцветковая – Galinsoga parviflora и др.). Поэтому, есть мнение, что в городах не происходит количественного обеднения флоры.

Флора города рассматривается как единое целое, но встречаемость видов неодинакова в разных частях городской среды. Разные виды поселяются в разных местообитаниях города, поэтому такие зоны города, как центр, жилые и промышленные территории, зеленые зоны, пустыри и кладбища, характеризуются своим набором видов. Есть и такие специфические местообитания, как крыши, стены домов, старых замков, гранитные набережные, памятники, крепости, метрополитен, транспорт и т.д.

Для многих городов мира составлены списки адвентивной флоры отдельных антропогенных мест обитания: «железнодорожные флоры», «портовые флоры», «флоры улиц, обочин дорог, свалок» и т.д.

Причина видового богатства города состоит в сильной гетерогенности города как местообитания и в различном характере землепользования, что создает многочисленные экологические ниши.

Схожесть условий в городах приводит к некоторой схожести флористического состава городов разных климатических зон. Так, 15% видов растений является общим для всех городов Европы. А если учитывать только центры городов, то этот процент еще выше.

По отношению к условиям городской среды выделяют пять групп видов растений:

· Экстремальные урбанофобы – виды, избегающие городские местообитания.

· Умеренные урбанофобы – виды, распространенные в естественных или антропогенных местообитаниях при слабых нарушениях (в парках, садах и т.д.).

· Урбанонейтральные растения – виды, распространенные во всех зонах города и имеющие широкую амплитуду к увлажнению, затенению и богатству почв.

· Умеренные урбанофилы – виды, встречающиеся в застроенной части города, но не исчезающие из окрестностей.

· Экстремальные урбанофилы – встречаются только в застроенной части города.

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивос­ти, наследственности, отбора). На протяжении филогенеза каж­дого вида растений в процессе эволюции выработались опреде­ленные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчи­вость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длитель­ного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

В природе в одном географическом регионе каждый вид рас­тений занимает экологическую нишу, соответствующую его био­логическим особенностям: влаголюбивые - ближе к водоемам, теневыносливые - под пологом леса и т. д. Наследственность растений формируется под влиянием определенных условий внешней среды. Важное значение имеют и внешние условия онтогенеза растений.

В большинстве случаев растения и посевы (посадки) сельско­хозяйственных культур, испытывая действие тех или иных небла­гоприятных факторов, проявляют устойчивость к ним как ре­зультат приспособления к условиям существования, сложившим­ся исторически, что отмечал еще К. А. Тимирязев.

1. Основные среды жизни.

При изучении окружающей среды (среды обитания растений и животных и производственной деятельности человека) выделяют следующие ее ос­новные составляющие: воздушную среду; водную среду (гидросферу); животный мир(человек, домашние и дикие животные, в том числе рыбы и птицы); растительный мир (культурные и дикие растения в том числе растущие в воде);почву(растительный слой);недра(верхняя часть земной коры, в пределах которой возможна добыча полезных ископаемых); климатическую и акустическую среду.

Воздушная среда может быть наружной, в которой большинс­тво людей проводят меньшую часть времени (до 10-15%), внутрен­ней производственной (в ней человек проводит до 25-30% своего времени) и внутренней жилой, где люди пребывают большую часть времени (до 60-70% и более).


Наружный воздух у поверхности земли содержит по объему: 78,08% азота; 20,95% кислорода; 0,94% инертных газов и 0,03% углекислого газа. На высоте 5 км содержание кислорода остает­ся тем же, а азота увеличивается до 78,89%. Часто воздух у поверхности земли имеет различные примеси, особенно в городах: там он содержит более 40 ингредиентов, чуждых природной воз­душной среде. Внутренний воздух в жилищах, как правило, имеет


повышенное содержание углекислого газа, а внутренний воздух производственных помещений обычно содержит примеси, характер которых определяется технологией производства. Среди газов выделяется водяной пар, который попадает в атмосферу в результате испарений с Земли. Большая его часть (90%) сосредоточена в самом нижнем пятикилометровом слое атмосферы, с высотой его количество очень быстро уменьшается. Атмосфера содержит много пыли, которая попадает туда с поверхности Земли и частично из космоса. При сильных волнениях ветры подхватывают водяные брызги из морей и океанов. Так попадают в атмосферу из воды частицы соли. В результате извержения вулканов, лесных пожаров, работы промышленных объектов и т.д. воздух загрязняется продуктами неполного сгорания. Больше всего пыли и других примесей в приземном слое воздуха. Даже после дождя в 1 см содержится около 30 тыс. пылинок, а в сухую погоду их в сухую погоду их в несколько раз больше.

Все эти мельчайшие примеси влияют на цвет неба. Молекулы газов рассеивают коротковолновую часть спектра солнечного луча, т.е. фиолетовые и синие лучи. Поэтому днем небо голубого цвета. А частицы примесей, которые значительно крупней молекул газов, рассеивают световые лучи почти всех длин волн. Поэтому, когда воздух запылен или в нем содержатся капельки воды, небо становится белесоватым. На больших высотах небо темно-фиолетовое и даже черное.

В результате происходящего на Земле фотосинтеза растительность ежегодно образует 100 млрд. т. органических веществ (около половины приходится на долю морей и океанов), усваивая при этом около 200 млрд. т. углекислого газа и выделяя во внешнюю среду около 145 млрд.т. свободного кисло­рода, полагают, что благодаря фотосинтезу образуется весь кислород атмосферы. О роли в этом круговороте зеленых на­саждений говорят следующие данные: 1 га зеленых насаждений в среднем за 1 час очищает воздух от 8 кг углекислого газа (выделяемого за это время при дыхании 200 человек). Взрос­лое дерево за сутки выделяет 180 литров кислорода, а за пять месяцев (с мая по сентябрь) оно поглощает около 44 кг углекислого газа.

Количество выделяемого кислорода и поглощаемого угле­кислого газа зависит от возраста зеленых насаждений, видо­вого состава, плотности посадки и других факторов.

Не меньшее значение имеют и морские растения - фито­планктон(в основном водоросли и бактерии), высвобождаю­щие путем фотосинтеза кислород.


Водная среда включает поверхностные и подземные воды. Поверхностные воды в основном сосредоточены в океане, содержа­нием 1 млрд. 375 млн. кубических километров - около 98% всей воды на Земле. Поверхность океана (акватория) составляет 361 млн. квадратных километров. Она примерно в 2,4 раза больше площади суши--территории, занимающей 149 млн. квадратных ки­лометров. Вода в океане соленая, причем большая ее часть (бо­лее 1 млрд. кубических километров) сохраняет постоянную со­леность около 3,5% и температуру, примерно равную 3,7є С. За­метные различия в солености и температуре наблюдаются почти исключительно в поверхностном слое воды, а также в окраинных и особенно в средиземных морях. Содержание растворенного кис­лорода в воде существенно уменьшается на глубине 50-60 мет­ров.


Подземные воды бывают солеными, солоноватыми (меньшей солености) и пресными; существующие геотермальные воды имеют повышенную температуру (более 30єС).

Для производственной деятельности человечества и его хозяйственно-бытовых нужд требуется пресная вода, количество которой составляет всего лишь 2,7% общего объема воды на Зем­ле, причем очень малая ее доля (всего 0,36%) имеется в легко­доступных для добычи местах. Большая часть пресной воды со­держится в снегах и пресноводных айсбергах, находящихся в районах в основном Южного полярного круга.

Годовой мировой речной сток пресной воды составляет 37,3 тыс. кубических километров. Кроме того, может использо­ваться часть подземных вод, равная 13 тыс. кубическим кило­метрам. К сожалению, большая часть речного стока в России, составляющая около 5000 кубических километров, приходится на малоплодородные и малозаселенные северные территории.

Климатическая среда является важным фактором, опреде­ляющим развитие различных видов животного, растительного мира и его плодородие. Характерной особенностью России являет­ся то, что большая часть ее территории имеет значительно бо­лее холодный климат, чем в других странах.

Все рассмотренные составляющие окружающей среды входят в

БИОСФЕРУ: оболочку Земли, включающую часть атмосферы, гидро­сферу и верхнюю часть литосферы, которые взаимно связанны слож­ными биохимическими циклами миграции вещества и энергии, геоло­гическую оболочку Земли, населенную живыми организмами. Верхний предел жизни биосферы ограничен интенсивной концентрацией уль­трафиолетовых лучей; нижний - высокой температурой земных недр (свыше100`С). Крайних пределов ее достигают только низшие орга­низмы - бактерии.

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) - благодаря механизмам генетической изменчивости, наследствен­ности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям.

В естественных для вида природных условиях произрастания или возделывания растения в процессе своего роста и развития часто испытывают воздействие неблагоприятных факторов внеш­ней среды, к которым относят температурные колебания, засуху, избыточное увлажнение, засоленность почвы и т. д. Каждое рас­тение обладает способностью к адаптации в меняющихся услови­ях внешней среды в пределах, обусловленных его генотипом. Чем выше способность растения изменять метаболизм в соответ­ствии с окружающей средой, тем шире норма реакции данного растения и лучше способность к адаптации. Это свойство отли­чает устойчивые сорта сельскохозяйственных культур. Как пра­вило, несильные и кратковременные изменения факторов внеш­ней среды не приводят к существенным нарушениям физиологи­ческих функций растений, что обусловлено их способностью сохранять относительно стабильное состояние при изменяющих­ся условиях внешней среды, т. е. поддерживать гомеостаз. Одна­ко резкие и длительные воздействия приводят к нарушению многих функций растения, а часто и к его гибели.

При действии неблагоприятных условий снижение физиоло­гических процессов и функций может достигать критических уровней, не обеспечивающих реализацию генетической програм­мы онтогенеза, нарушаются энергетический обмен, системы ре­гуляции, белковый обмен и другие жизненно важные функции растительного организма. При воздействии на растение неблаго­приятных факторов (стрессоров) в нем возникает напряженное состояние, отклонение от нормы - стресс. Стресс - общая не­специфическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений: физические - недостаточная или избыточная влаж­ность, освещенность, температура, радиоактивное излучение, ме­ханические воздействия; химические - соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические - поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние жи­вотных, цветение, созревание плодов.

Сила стресса зависит от скорости развития неблагоприятной для растения ситуации и уровня стрессирующего фактора. При медленном развитии неблагоприятных условий растение лучше приспосабливается к ним, чем при кратковременном, но силь­ном действии. В первом случае, как правило, в большей степени проявляются специфические механизмы устойчивости, во вто­ром - неспецифические.

В неблагоприятных природных условиях устойчивость и про­дуктивность растений определяются рядом признаков, свойств и защитно-приспособительных реакций. Различные виды растений обеспечивают устойчивость и выживание в неблагоприятных ус­ловиях тремя основными способами: с помощью механизмов, которые позволяют им избежать неблагоприятных воздействий (состояние покоя, эфемеры и др.); посредством специальных структурных приспособлений; благодаря физиологическим свой­ствам, позволяющим им преодолеть пагубное влияние окружаю­щей среды.

Однолетние сельскохозяйственные растения в умеренных зонах, завершая свой онтогенез в сравнительно благоприятных условиях, зимуют в виде устойчивых семян (состояние покоя). Многие многолетние растения зимуют в виде подземных запасаю­щих органов (луковиц или корневищ), защищенных от вымерза­ния слоем почвы и снега. Плодовые деревья и кустарники умерен­ных зон, защищаясь от зимних холодов, сбрасывают листья.

Защита от неблагоприятных факторов среды у растений обес­печивается структурными приспособлениями, особенностями анатомического строения (кутикула, корка, механические ткани и т. д.), специальными органами защиты (жгучие волоски, ко­лючки), двигательными и физиологическими реакциями, выра­боткой защитных веществ (смол, фитонцидов, токсинов, защит­ных белков).

К структурным приспособлениям относятся мелколистность и даже отсутствие листьев, воскообразная кутикула на поверхности листьев, их густое опущение и погруженность устьиц, наличие сочных листьев и стеблей, сохраняющих резервы воды, эректоидность или пониклость листьев и др. Растения располагают различными физиологическими механизмами, позволяющими приспосабливаться к неблагоприятным условиям среды. Это сам-тип фотосинтеза суккулентных растений, сводящий к ми­нимуму потери воды и крайне важный для выживания растений в пустыне и т. д.

2. Приспособление у растений

Холодостойкость растений

Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкос­тью понимают способность растений переносить положительные температуры несколько выше Оє С. Холодостойкость свойственна растениям умеренной полосы (ячмень, овес, лен, вика и др.). Тропические и субтропические растения повреждаются и отми­рают при температурах от 0є до 10є С (кофе, хлопчатник, огурец и др.). Для большинства же сельскохозяйственных растений низ­кие положительные температуры негубительны. Связано это с тем, что при охлаждении ферментативный аппарат растений не расстраивается, не снижается устойчивость к грибным заболева­ниям и вообще не происходит заметных повреждений растений.

Степень холодостойкости разных растений неодинакова. Многие растения южных широт повреждаются холодом. При температуре 3 °С повреждаются огурец, хлопчатник, фасоль, ку­куруза, баклажан. Устойчивость к холоду у сортов различна. Для характеристики холодостойкости растений используют понятие температурный минимум, при котором рост растений прекращается. Для большой группы сельскохозяйственных растений его величина составляет 4 °С. Однако многие растения имеют более высокое значение температурного минимума и соответственно они менее устойчивы к воздействию холода.

Приспособление растений к низким положительным темпера­турам.

Устойчивость к низким температу­рам - генетически детерминированный признак. Холодостойкость растений опре­деляется способностью растений сохранять нормальную струк­туру цитоплазмы, изменять обмен веществ в период охлаждения и последующего повышения температуры на до­статочно высоком уровне.

Морозоустойчивость растений

Морозоустойчивость - способность растений переносить тем­пературу ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже -20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних - клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых куль­тур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани этих растений могут замерзать, одна­ко растения не погибают.

Замерзание растительных клеток и тканей и происходящие при этом процессы.

Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5-1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

Морозоустойчивые растения обладают приспособления­ми, уменьшающими обезвоживание клеток. При понижении температуры у таких растений отмечаются повышение содержа­ния Сахаров и других веществ, защищающих ткани (криопротекторы), это прежде всего гидрофильные белки, моно- и олигосахариды; снижение оводненности клеток; увеличение количества полярных липидов и снижение насыщенности их жирнокислотных остатков; увеличение количества защитных белков.

На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образую­щиеся в клетках. В зимующих растениях в цитоплазме накапли­ваются сахара, а содержание крахмала снижается. Влияние сахаров на повышение морозоустойчивости растений многосторонне. Накопление Сахаров предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образую­щегося льда.

Свойство морозоустойчивости фор­мируется в процессе онтогенеза растения под влиянием опреде­ленных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

Жизненный цикл развития озимых, двулетних и многолетних растений контролируется сезонным ритмом свето­вого и температурного периодов. В отличие от яровых однолет­них растений они начинают готовиться к перенесению неблаго­приятных зимних условий с момента остановки роста и затем в течение осени во время наступления пониженных температур.

Зимостойкость растений

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки.

Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в тече­ние зимы. Помимо прямого действия мороза растения подверга­ются еще ряду неблагоприятных факторов. В течение зимы тем­пература может существенно колебаться. Морозы нередко сменя­ются кратковременными и длительными оттепелями. В зимнее время нередки снежные бури, а в бесснежные зимы в более южных районах страны - и суховеи. Все это истощает растения, которые после перезимовки выходят сильно ослабленными и в последующем могут погибнуть.

Особенно многочисленные неблагоприятные воздействия ис­пытывают травянистые многолетние и однолетние растения. На территории России в неблагоприятные годы гибель посевов озимых зерновых достигает 30-60 %. Погибают не только озимые хлеба, но и многолетние травы, плодовые и ягодные многолетние насаждения. Кроме низких температур озимые растения повреждается и гибнут от ряда других неблагопри­ятных факторов в зимнее время и ранней весной: выпревания, вымокания, ледяной корки, выпирания, повреждения от зимней засухи.

Выпревание, вымокание, гибель под ледяной коркой, выпира­ние, повреждение от зимней засухи.

Выпревание. Среди перечисленных невзгод первое место занимает выпревание рас­тений. Гибель растений от выпревания наблюдается преимущест­венно в теплые зимы с большим снеговым покровом, который лежит 2-3 месяца, особенно если снег выпадает на мокрую и талую землю. Исследования показали, что при­чина гибели озимых от выпревания - истощение растений. На­ходясь под снегом при температуре около О °С в сильно увлаж­ненной среде, почти полной темноте, т. е. в условиях, при кото­рых процесс дыхания идет достаточно интенсивно, а фотосинтез исключен, растения постепенно расходуют сахара и другие запа­сы питательных веществ, накопленные в период прохождения первой фазы закаливания, и погибают от истощения (содержа­ние Сахаров в тканях уменьшается с 20 до 2-4 %) и весенних заморозков. Такие растения весной легко повреждаются снежной плесенью, что также приводит к их гибели.

Вымокание. Вымокание проявляется преимущественно весной в пониженных местах в период таяния снега, реже во время длительных оттепелей, когда на поверхности почвы накап­ливается талая вода, которая не впитывается в замершую почву и может затопить растения. В этом случае причиной гибели растений служит резкий недостаток кислорода (анаэробные усло­вия - гипоксия). У растений, оказавшихся под слоем воды, нор­мальное дыхание прекращается из-за недостатка кислорода в воде и почве. Отсутствие кислорода усиливает анаэробное дыха­ние растений, в результате чего могут образоваться токсичные вещества и растения погибают от истощения и прямого отравле­ния организма.

Гибель под ледяной коркой. Ледяная корка об­разуется на полях в районах, где частые оттепели сменяются сильными морозами. Действие вымокания в этом случае может усугубляться. При этом происходит образование висячих или притертых (контактных) ледяных корок. Менее опасны висячие корки, так как они образуются сверху почвы и практически не соприкасаются с растениями; их легко разрушить катком.

При образовании же сплошной ледяной контактной корки растения полностью вмерзают в лед, что ведет к их гибели, так как и без того ослабленные от вымокания растения подвергают­ся очень сильному механическому давлению.

Выпирание. Повреждение и гибель растений от выпира­ния определяются разрывами корневой системы. Выпирание рас­тений наблюдается, если осенью морозы наступают при отсутст­вии снежного покрова или если в поверхностном слое почвы мало воды (при осенней засухе), а также при оттепелях, если снеговая вода успеет всосаться в почву. В этих случаях замерзание воды начинается не с поверхности почвы, а на некоторой глубине (где есть влага). Образующаяся на глубине прослойка льда постепенно утолщается за счет продолжающегося поступления воды по по­чвенным капиллярам и поднимает (выпирает) верхние слои почвы вместе с растениями, что приводит к обрыву корней растений, проникших на значительную глубину.

Повреждения от зимней засухи. Устойчивый снеговой покров предохраняет озимые злаки от зимнего вы­сыхания. Однако они в условиях бесснежной или малоснежной зимы, как и плодовые деревья и кустарники, в ряде районов России часто подвергаются опасности чрезмерного иссушения постоянными и сильными ветрами, особенно в конце зимы при значительном нагреве солнцем. Дело в том, что водный баланс растений складывается зимой крайне неблагоприятно, так как поступление воды из замерзшей почвы практически прекращается.

Для уменьшения испарения воды, неблагоприятного действия зимней засухи плодовые древесные породы образуют на ветвях мощный слой пробки, сбрасывают на зиму листья.

Яровизация

Фотопериодические реакции на сезонные изменения длины дня имеют значение для периодичности цветения многих видов как умеренных, так и тропических областей. Однако следует отметить, что среди видов умеренных широт, проявляющих фо­топериодические реакции, относительно мало весеннецветущих, хотя мы постоянно сталкиваемся с тем, что значительное число «цветов цветет весной», и многие из таких весеннецветущих форм, например Ficariaverna, первоцвет (Primulavutgaris), фиалки (виды рода Viola) и т. д., проявляют выраженное се­зонное поведение, оставаясь вегетативными оставшуюся часть года после обильного весеннего цветения. Можно предположить, что весеннее цветение -реакция на короткие дни зимой, но для многих видов, это, по-видимому, не так.

Конечно, длина дня не является единственным внешним фактором, изменяющимся в течение года. Ясно, что и темпе­ратура также характеризуется четко выраженными сезонными изменениями, особенно в умеренных областях, хотя в отноше­нии этого фактора наблюдаются значительные колебания, как ежедневные, так и ежегодные. Мы знаем, что сезонные изме­нения температуры, так же как и изменения длины дня, ока­зывают существенное влияние на цветение многих видов расте­ний.

Типы растений, требующих охлаждения для перехода к цветению .

Было установлено, что мно­гие виды, в том числе озимые однолетние, а также двулетние и многолетние травянистые растения, нуждаются в охлажде­нии для перехода к цветению.

Известно, что озимые однолетники и двулетники представ­ляют собой монокарпические растения, которые требуют яро­визации,- они остаются вегетативными во время первого ве­гетативного сезона и цветут следующей весной или ранним ле­том в ответ на период охлаждения, получаемый зимой. Необ­ходимость охлаждения двулетних растений для индукции цве­тения была экспериментально продемонстрирована на ряде видов, таких, как свекла (Betavulgaris), сельдерей (Apiutngraveolens), капуста и другие культивируемые сорта рода Brassiса, колокольчик (Campanulamedium), лунник (Lunariabiennis), наперстянка (Digitalispurpurea) и другие. Если растения на­перстянки, которые в нормальных условиях ведут себя как дву­летники, т. е. зацветают на второй год после прорастания, со­держать в оранжерее, они могут оставаться вегетативными не­сколько лет. В районах с мягкой зимой капуста в течение не­скольких лет может расти в открытом грунте без «образова­ния стрелки» (т. е. цветения) весной, что обычно происходит в районах с холодной зимой. Такие виды обязательно требуют яровизации, однако у ряда других видов цветение ускоряется при воздействии на них холодом, но может наступать и без яровизации; к таким видам, проявляющим факультативную по­требность в холоде, относятся салат (Lactucasaiiva), шпинат (Spinaciaoleracea) и позднецветущие сорта гороха (Pistimsa-tivum).

Так же как и двулетние, многие многолетние виды нуждаются в воздействии холодом и не зацветают без ежегодного зимнего охлаждения. Из обычных многолетних растений в холодовом воздействии нуждаются первоцвет (Primulavulgaris), фиалки (Violaspp.), лакфиоль (Cheiranthuscheirii и С. allionii), лев­кой (Mathiolaincarna), некоторые сорта хризантем (Chrisant-hemummorifolium), виды рода Aster, турецкая гвоздика (Dianthus), плевел (Loliumperenne). Многолетние виды требуют переяровизации каждую зиму.

Вполне вероятно, что и у других весеннецветущих многолет­ников можно обнаружить потребность в охлаждении. Весенне-цветущие луковичные растения, такие, как нарциссы, гиацин­ты, пролески (Endymionnonscriptus), крокусы и т. д. не требу­ют охлаждения для заложения цветков, поскольку примордий цветка заложился в луковице предыдущим летом, но их рост в значительной степени зависит от температурных условий. Например, у тюльпана началу цветения благоприятствуют от­носительно высокие температуры (20°С), но для удлинения стебля и роста листьев оптимальной температурой вначале яв­ляется 8-9 °С с последовательным повышением на более позд­них стадиях до 13, 17 и 23°С. Аналогичные реакции на темпе­ратуру характерны для гиацинтов и нарциссов.

У многих видов заложение цветка происходит не во время самого периода охлаждения и начинается лишь после того, как растение подверглось действию более высоких температур, следующих за охлаждением.

Таким образом, хотя при низких температурах метаболизм у большинства растений значительно замедляется, не вызывает сомнения, что яровизация включает активные физиологические процессы, природа которых пока еще совершенно неизвестна.

Жароустойчивость растений

Жароустойчивость (жаровыносливость) - способность расте­ний переносить действие высоких температур, перегрев. Это ге­нетически обусловленный признак. Виды растений различаются по выносливости к высоким температурам.

По жароустойчивости выделяют три группы растений.

Жаростойкие - термофильные сине-зеленые водоросли и бак­терии горячих минеральных источников, способные переносить повышение температуры до 75-100 °С. Жароустойчивость тер­мофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устой­чивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые - растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толстянковые), выдерживающие нагревание солнечными лучами до 50-65єС. Жароустойчивость суккулентов во многом определяет­ся повышенными вязкостью цитоплазмы и содержанием связан­ной воды в клетках, пониженным обменом веществ.

Нежаростойкие - мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47 єС, затененных мест - около 40-42 °С, водные растения выдерживают повышение температуры до 38-42 °С. Из сельско­хозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, сни­жающей температуру листьев. Более жаростойкие мезофиты отличаются повышенной вязкостью цитоплазмы и усиленным син­тезом жаростойких белков-ферментов.

Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсо­ляцию; складывание и скручивание листьев; опушения или че­шуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий; большую толщину кутикулярного слоя; высокое содержание уг­леводов и малое - воды в цитоплазме и др.

На тепловой стресс растения очень быстро реагируют индук­тивной адаптацией. К воздействию высоких температур они могут подготовиться за несколько часов. Так, в жаркие дни устойчивость растений к высоким температурам после полудня выше, чем утром. Обычно эта устойчивость временная, она не закрепляется и довольно быстро исчезает, если становится про­хладно. Обратимость теплового воздействия может составлять от нескольких часов до 20 дней. В период образования генератив­ных органов жаростойкость однолетних и двулетних растений снижается.

Засухоустойчивость растений

Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый пери­од, сопровождаемый снижением относительной влажности воз­духа, влажности почвы и повышением температуры, когда не обеспечиваются нормальные потребности растений в воде. На территории России имеются регионы неустойчивого увлажнения с годовым количеством осадков 250-500 мм и засушливые, с количеством осадков менее 250 мм в год при испаряемости более 1000 мм.

Засухоустойчивость - способность растений переносить дли­тельные засушливые периоды, значительный водный дефицит, обезвоживание клеток, тканей и органов. При этом ущерб уро­жая зависит от продолжительности засухи и ее напряженности. Различают засуху почвенную и атмосферную.

Почвенная засуха вызывается длительным отсутствием дождей в сочетании с высокой температурой воздуха и солнечной инсо­ляцией, повышенным испарением с поверхности почвы и транспирацией, сильными ветрами. Все это приводит к иссушению корнеобитаемого слоя почвы, снижению запаса доступной для растений воды при пониженной влажности воздуха. Атмосферная засуха характеризуется высокой температурой и низкой относи­тельной влажностью воздуха (10-20 %). Жесткая атмосферная засуха вызывается перемещением масс сухого и горячего возду­ха - суховея. К тяжелым последствиям приводит мгла, когда суховей сопровождается появлением в воздухе почвенных частиц (пыльные бури).

Атмосферная засуха, резко усиливая испарение воды с по­верхности почвы и транспирацию, способствует нарушению со­гласованности скоростей поступления из почвы в надземные органы воды и потери ее растением, в результате растение завядает. Однако при хорошем развитии корневой системы атмо­сферная засуха не причиняет растениям большого вреда, если температура не превышает переносимый растениями предел. Продолжительная атмосферная засуха в отсутствие дождей при­водит к почвенной засухе, которая более опасна для растений.

Засухо­устойчивость обусловлена генетически определенной приспособ­ленностью растений к условиям места обитания, а также адапта­цией к недостатку воды. Засухоустойчивость выражается в спо­собности растений переносить значительное обезвоживание за счет развития высокого водного потенциала тканей при функци­ональной сохранности клеточных структур, а также за счет адап­тивных морфологических особенностей стебля, листьев, генера­тивных органов, повышающих их выносливость, толерантность к действию длительной засухи.

Типы растений по отношению к водному режиму

Растения засушливых областей называются ксерофитами (от греческого хеrоs - сухой). Они способны в процессе индивидуаль­ного развития приспосабливаться к атмосферной и почвенной засухе. Характерные признаки ксерофитов - незначительные размеры их испаряющей поверхности, а также небольшие размеры надземной части по сравнению с подземной. Ксерофиты - это обычно травы или низкорослые кустарники. Их делят на несколько типов. Приводим классификацию ксерофитов по П. А. Генкелю.

Суккуленты - очень стойкие к перегреву и устойчивые к обез­воживанию, во время засухи они не испытывают недостатка воды, потому что содержат большое количество ее и медленно расходуют. Корневая система у них разветвлена во все стороны в верхних слоях почвы, благодаря чему в дождливые периоды растения быстро вса­сывают воду. Это кактусы, алоэ, очиток, молодило.

Эвксерофиты - жаростойкие растения, которые хорошо перено­сят засуху. К этой группе относятся такие степные растения, как вероника сизая, астра мохнатая, полынь голубая, арбуз колоцинт, верблюжья колючка и др. У них незначительная транспирация, вы­сокое осмотическое давление, цитоплазма отличается высокой элас­тичностью и вязкостью, корневая система очень разветвлена, и ос­новная ее масса размещена в верхнем слое почвы (50-60 см). Эти ксерофиты способны сбрасывать листья и даже целые ветви.

Гемиксерофиты, или полуксерофиты - это растения, которые неспособны переносить обезвоживание и перегрев. Вязкость и элас­тичность протопласта у них незначительная, отличается высокой транспирацией, глубокой корневой системой, которая может дости­гать подпочвенной воды, что обеспечивает бесперебойное снабжение растения водой. К этой группе относятся шалфей, резак обычный и др.

Стипаксерофшпы - это ковыль, тырса и другие узколистные степные злаки. Они устойчивы к перегреву, хорошо используют вла­гу кратковременных дождей. Выдерживают лишь кратковременную нехватку воды в почве.

Пойкилоксерофиты - растения, не регулирующие своего вод­ного режима. Это в основном лишайники, которые могут высыхать до воздушно-сухого состояния и снова проявлять жизнедеятельность после дождей.

Гигрофиты (от греческого hihros - влажный). У растений, относящихся к этой группе, нет приспособлений, ограничивающих расход воды. Для гигрофитов характерны сравнительно большие раз­меры клеток, тонкостенная оболочка, слабоодревесневшие стенки сосудов, древесных и лубяных волокон, тонкая кутикула и малоутол­щенные внешние стенки эпидермиса, большие устьица и незначи­тельное количество их на единицу поверхности, большая листовая пластинка, плохо развитые механические ткани, редкая сеть жилок в листе, большая кутикулярная транспирация, длинный стебель, недостаточно развитая корневая система. По строению гигрофиты приближаются к теневыносливым растениям, но имеют своеобразную гигроморфную структуру. Незначительный недостаток воды в почве вызывает быстрое завядание гигрофитов. Осмотическое давление клеточного сока в них невысокое. К ним относятся манник, багуль­ник, брусника, лох.

По условиям произрастания и особенностям строения к гигро­фитам очень близки растения с частично или полностью погружен­ными в воду или плавающими на ее поверхности листьями, которые называются гидрофитами.

Мезофиты (от греческого mesos - средний, промежуточный). Растения этой экологической группы произрастают в условиях до­статочного увлажнения. Осмотическое давление клеточного сока у мезофитов 1-1,5 тыс. кПа. Они легко завядают. К мезофитам отно­сятся большинство луговых злаков и бобовых -пырей ползучий, лисохвост луговой, тимофеевка луговая, люцерна синяя и др. Из по­левых культур твердые и мягкие пшеницы, кукуруза, овес, горох, соя, сахарная свекла, конопля, почти все плодовые (за исключением миндаля, винограда), многие овощные культуры (морковь, помидорыи др.).

Транспирирующие органы – листья отличаются значительной пластичностью; в зависимости от условий произраста­ния в их строении наблюдаются довольно большие отличия. Даже листья одного растения при разном водоснабжении и освещении име­ют различия в строении. Установлены определенные закономерности в строении листьев в зависимости от расположения их на растении.

В. Р. Заленский обнаружил изменения в анатомическом строе­нии листьев по ярусам. Он установил, что у листьев верхнего яруса наблюдаются закономерные изменения в сторону усиления ксеро­морфизма, т. е. происходит образование структур, повышающих засухоустойчивость этих листьев. Листья, расположенные в верхней части стебля, всегда отличаются от нижних, а именно: чем выше рас­положен лист на стебле, тем меньше размеры его клеток, большее ко­личество устьиц и меньше их размеры, большее количество волосков на единицу поверхности, гуще сеть проводящих пучков, сильнее раз­вита палисадная ткань. Все эти признаки характеризуют ксерофилию, т. е. образование структур, способствующих повышению засу­хоустойчивости.

С определенной анатомической структурой связаны и физиоло­гические особенности, а именно: верхние листья отличаются более высокой ассимиляционной способностью и более интенсивной транспирацией. Концентрация сока в верхних листьях также более высо­кая, в связи с чем может происходить оттягивание воды верхними листьями от нижних, засыхание и отмирание нижних листьев. Струк­тура органов и тканей, повышающая засухоустойчивость растений, называется ксероморфизмом. Отличительные особенности в структуре листьев верхнего яруса объясняются тем, что они развиваются в ус­ловиях несколько затрудненного водоснабжения.

Для уравнения баланса между поступлением и расходом воды в растении образовалась сложная система анатомо-физиологических приспособлений. Такие приспособления наблюдаются у ксерофитов, гигрофитов, мезофитов.

Результаты исследований показали, что приспособительные свой­ства у засухоустойчивых форм растений возникают под влиянием условий их существования.

ЗАКЛЮЧЕНИЕ

Удивительная гармония живой природы, ее совершенство создаются самой природой: борьбой за выживание. Формы приспособлений у растений и животных бесконечно разнообразны. Весь животный и растительный мир со времени своего появления совершенствуется по пути целесообразных приспособлений к условиям обитания: к воде, к воздуху, солнечному свету, силы тяжести и т.д.

ЛИТЕРАТУРА

1. Володько И.К. ""Микроэлементы и устойчивость растений к неблагоприятным условиям"", Минск, Наука и техника, 1983г.

2. Горышина Т.К. ""Экология растений"", уч. Пособие для ВУЗов, Москва, В. школа, 1979г.

3. Прокофьев А.А. ""Проблемы засухоустойчивости растений"", Москва, Наука, 1978г.

4. Сергеева К.А. ""Физиологические и биохимические основы зимостойкости древесных растений"", Москва, Наука, 1971г

5. Культиасов И.М. Экология растений. - М.: Изд-во московского ун-та, 1982

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 . Адаптивный синдром у растений на действие стрессоров

Выделяют три основные группы факторов, вызывающих стресс у растений: физические -- недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия; химические -- соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические -- поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние животных, цветение, созревание плодов. совокупность адаптационных реакций организма, носящих общий защитный характер и возникающих в ответ на значительные по силе и продолжительности неблагоприятные воздействия -- стрессоры. Функциональное состояние, развивающееся под действием стрессоров, называется стрессом. Адаптационный синдром предложил канадский физиолог-эндокринолог Гансом Селье (1936). В развитии А. с. обычно выделяют 3 стадии. 1-я -- стадия тревоги -- продолжается от нескольких часов до 2 сут и включает две фазы -- шока и противошока, на последней из которых происходит мобилизация защитных реакций организма. Во время 2-й стадии А. с. -- стадии сопротивляемости -- устойчивость организма к различным воздействиям повышена. Эта стадия либо приводит к стабилизации состояния и выздоровлению, либо сменяется последней стадией А. с. -- стадией истощения, которая может окончиться гибелью организма.

В первую фазу наблюдаются значительные отклонения в физиолого-биохимических процессах, проявляются как симптомы повреждения, так и защитная реакция. Значение защитных реакций состоит в том, что они направлены на устранение (нейтрализацию) возникающих повреждений. Если воздействие слишком велико, организм погибает еще в стадии тревоги в течение первых часов. Если этого не случилось, реакция переходит во вторую фазу. Во второй фазе организм либо адаптируется к новым условиям существования, либо повреждения усиливаются. При медленном развитии неблагоприятных условий организм легче приспосабливается к ним. После окончания фазы адаптации растения нормально вегетируют в неблагоприятных условиях уже в адаптированном состоянии при общем пониженном уровне процессов. В фазу повреждения (истощения, гибели) усиливаются гидролитические процессы, подавляются энергообразующие и синтетические реакции, нарушается гомеостаз. При сильной напряженности стресса, превышающей пороговое для организма значение, растение гибнет. При прекращении действия стресс-фактора и нормализации условий среды включаются процессы репарации, т. е. восстановления или ликвидации повреждений. Адаптационный процесс (адаптация в широком смысле) протекает постоянно и осуществляет «настройку» организма изменениям внешней среды в пределах естественных колебаний факторов. Эти изменения могут носить как неспецифический, так и специфический характер. Неспецифическими являются однотипные реакции организма на действие разнородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков.

Стресс -- общая неспецифическая адаптационная реакция организма на действие любых неблагоприятных факторов. Выделяют три основные группы факторов, вызывающих стресс у растений: физические -- недостаточная или избыточная влажность, освещенность, температура, радиоактивное излучение, механические воздействия; химические -- соли, газы, ксенобиотики (гербициды, инсектициды, фунгициды, промышленные отходы и др.); биологические -- поражение возбудителями болезней или вредителями, конкуренция е другими растениями, влияние животных, цветение, созревание плодов.

2 . Типы адаптации у растений с примерами

Адаптация (приспособление) растения к конкретным условиям среды обеспечивается за счет физиологических механизмов (физиологическая адаптация), а у популяции организмов (вида) -- благодаря механизмам генетической изменчивости, наследственности и отбора (генетическая адаптация). Факторы внешней среды могут изменяться закономерно и случайно. Закономерно изменяющиеся условия среды (смена сезонов года) вырабатывают у растений генетическую приспособленность к этим условиям. Адаптация - это процесс приспособления живых организмов к определённым условиям внешней среды. Существуют следующие виды адаптации:

1. Адаптация к климатическим и другим абиотическим факторам (опадение листвы, холодостойкость хвойных деревьев).

2. Адаптация к добыванию пищи и воды (длинные корни растений в пустыне).

4. Адаптация, обеспечивающая поиск и привлечение партнёра у животных и опыление у растений (запах, яркий цвет у цветков).

5. Адаптация к миграциям у животных и распространение семян у растений (крылья у семян для переноса ветром, колючки у семя).

Различные виды растений обеспечивают устойчивость и выживание в неблагоприятных условиях тремя основными способами: с помощью механизмов, которые позволяют им избежать неблагоприятных воздействий (состояние покоя, эфемеры и др.); посредством специальных структурных приспособлений; благодаря физиологическим свойствам, позволяющим им преодолеть пагубное влияние окружающей среды.Однолетние сельскохозяйственные растения в умеренных зонах, завершая свой онтогенез в сравнительно благоприятных условиях, зимуют в виде устойчивых семян (состояние покоя). Многие многолетние растения зимуют в виде подземных запасающих органов (луковиц или корневищ), защищенных от вымерзания слоем почвы и снега. Плодовые деревья и кустарники умеренных зон, защищаясь от зимних холодов, сбрасывают листья.

Защита от неблагоприятных факторов среды у растений обеспечивается структурными приспособлениями, особенностями анатомического строения (кутикула, корка, механические ткани и т. д.), специальными органами защиты (жгучие волоски, колючки), двигательными и физиологическими реакциями, выработкой защитных веществ (смол, фитонцидов, токсинов, защитных белков).

К структурным приспособлениям относятся мелколистность и даже отсутствие листьев, воскообразная кутикула на поверхности листьев, их густое опущение и погруженность устьиц, наличие сочных листьев и стеблей, сохраняющих резервы воды, эректоидность или пониклость листьев и др. Растения располагают различными физиологическими механизмами, позволяющими приспосабливаться к неблагоприятным условиям среды. Это сам-тип фотосинтеза суккулентных растений, сводящий к минимуму потери воды и крайне важный для выживания растений в пустыне и т. д. способы выживания растений в степи

Известно, что для преобладающего большинства степных растений характерно развитие сильного опушения стеблей, листьев, а иногда даже цветков. Из-за этого степной травостой имеет тусклый, седоватый или сизоватый цвет, контрастирующий с яркой изумрудной зеленью луговых сообществ. Примерами широко распространенных видов растений с сизым восковым налетом могут служить многие представители рода молочай Уменьшению расхода воды способствует и общее сокращение испаряющей поверхности, что достигается за счет развития узких листовых пластинок у многих степных злаков и осок, которые к тому же в сухую погоду могут складываться вдоль, уменьшая испаряющую поверхность. Подобное свойство отмечено, в частности, у некоторых видов ковылей. Сокращение испаряющей поверхности у многих степных растений достигается также за счет сильно рассеченных листовых пластинок. Подобное явление можно наблюдать при сравнении многих близких видов зонтичных, а также у полыней из семейства сложноцветных. Ряд растений проблему нехватки влаги решает за счет развития глубоких корневых систем, позволяющих получать воду из более глубоких почвенных горизонтов и таким образом сохранять относительную независимость от резких изменений увлажненности, происходящих в течение вегетационного периода. В эту группу входят очень многие степные растения - люцерна, некоторые астрагалы, кермеки, также ряд видов из семейства сложноцветных

Способность растения переносить действие неблагоприятных факторов и давать в таких условиях потомство называется устойчивостью или стресс-толерантностью. Адаптация (лат. adaptio - приспособление, прилаживание) - это генетически детерминированный процесс формирования защитных систем, обеспечивающих повышение устойчивости и протекание онтогенеза в ранее неблагоприятных для него условиях. Адаптация включает в себя все процессы (анатомические, морфологические, физиологические, поведенческие, популяционные и др.) Однако ключевым фактором является время, предоставляемое организму для ответа. Чем больше времени предоставляется для ответа, тем больше выбор возможных стратегий.

При внезапном действии экстремального фактора ответ должен последовать незамедлительно. В соответствии с этим различают три главные стратегии адаптации: эволюционные, онтогенетические и срочные.

3 . Эволюционная адаптация у растений

Эволюционные (филогенетические) адаптации - это адаптации, возникающие в ходе эволюционного процесса (филогенеза) на основе генетических мутаций, отбора и передающиеся по наследству.

Примером служит анатомо-морфологические особенности растений, обитающих в засушливых жарких пустынях земного шара, а также на засоленных территориях (приспособленность к дефициту влаги). Биоритмы являются биологическими часами организма. Большинство биологических ритмов у растений, животных и человека выработалось в процессе эволюции жизни на Земле под воздействием различных факторов среды, прежде всего космических излучений, электромагнитных полей и др.

Филогенетическая адаптация -- это процесс, длящийся на протяжении жизней нескольких поколений, и уже поэтому, - она, по мнению Ю. Малова, не может быть свойством одного, отдельно взятого организма. Гомеостаз организма как основное свойство есть результат филогенетической адаптации. Однообразие представителей человеческого вида проявляется не в строгом сходстве морфологических и функциональных признаков отдельных индивидов, а в соответствии их внешним условиям окружающей среды. Различие в строении органов и тканей еще не есть отрицание нормы. Важно, соответствуют ли это строение и его функции вариациям внешней среды. Если структура соответствует колебаниям внешних факторов, значит, она обеспечивает жизнеспособность организма и определяет его здоровье. Содержание понятия адаптации охватывает не только способность живых систем отражать, посредством изменения, факторы среды, но и способность этих систем в процессе взаимодействия создавать в себе механизмы и модели активного изменения и преобразования среды, в которой они обитают.

4 . Онтогенетическая адаптация у растений

Онтогенетическая адаптация -- способность организма приспосабливаться в своем индивидуальном развитии к изменяющимся внешним условиям. Различают следующие подвиды:

генотипическая адаптация -- отбор наследственно детерминированной (изменение генотипа) повышенной приспособленности к измененным условиям (спонтанный мутагенез), фенотипическая адаптация -- при этом отборе изменчивость ограничена нормой реакции, определяемой стабильным генотипом.

Онтогенетические, или фенотипические, адаптации обеспечивают выживание данного индивида. Они связаны с генетическими мутациями и не передаются по наследству. Формирование такого рода приспособлений требует сравнительно много времени, поэтому их иногда называют долговременными адаптациями. Классическим примером подобных адаптаций является переход некоторых С3-растений на САМ-тип фотосинтеза, помогающий экономить воду, в ответ на засоление и жесткий водный дефицит.

Онтогенетическая адаптация -- способность организма приспосабливаться в своем индивидуальном развитии к изменяющимся внешним условиям. Различают следующие подвиды: генотипическая адаптация -- отбор наследственно детерминированной (изменение генотипа) повышенной приспособленности к измененным условиям (спонтанный мутагенез) фенотипическая адаптация -- при этом отборе изменчивость ограничена нормой реакции, определяемой стабильным генотипом. Онтогенетические, или фенотипические адаптации обеспечивают выживание данного индивида. Они связаны с генетическими мутациями и не передаются по наследству. Классическим примером подобных адаптаций является переход некоторых С3- растений на САМ-тип фотосинтеза, помогающий экономить воду, в ответ на засоление и жесткий водный дефицит. У растений источником адаптации могут быть и ненаследственные адаптивные реакции -- модификации. Онтогенез особи начинается с момента её образования. Этим событием особи может быть прорастание споры, образование зиготы, начало дробления зиготы, возникновение особи тем или иным путем при вегетативном размножении (иногда начало онтогенеза относят к образованию исходных клеток, например, оогоний). В ходе онтогенеза происходят рост, дифференцировка и интеграция частей развивающегося организма. Онтогенез особи может завершиться её физической смертью или её воспроизведением (в частности, при размножении путем деления). Каждый организм в период индивидуального развития представляет собой целостную систему, следовательно, и онтогенез - это целостный процесс, который не может быть разложен на простые составляющие части без потери качества. Степень возможной изменчивости в ходе реализации генотипа называется нормой реакции и выражается совокупностью возможных фенотипов при различных условиях среды. Это определяет так называемую онтогенетическую адаптацию, обеспечивающую выживание и репродукцию организмов иногда даже при значительных изменениях внешней среды. Влаголюбие и теневыносливость, жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

5 . Срочная адаптация у растений

Срочная адаптация, в основе которой лежит образование и функционирование шоковых защитных систем, происходит при быстрых и интенсивных изменениях условий обитания. Эти системы обеспечивают лишь кратковременное выживание при повреждающем действии фактора и тем самым создают условия для формирования более надежных долговременных механизмов адаптации. К шоковым защитным системам относятся, например, система теплового шока, которая образуется в ответ на быстрое повышение температуры, или SOS-система, сигналом для запуска которой является повреждение ДНК.

Срочная адаптация -- немедленный ответ организма на воздействие внешнего фактора. Долговременная адаптация -- постепенно развивающийся ответ организма на действие внешнего фактора. Первый, начальный, обеспечивает несовершенную адаптацию. Он начинается с момента действия раздражителя и осуществляется на основе имеющихся функциональных механизмов (например усиление теплопродукции при охлаждении).

6 . Активная адаптация

Формирование защитных механизмов, при этом обязательным условием выживания является индукция синтеза ферментов с новыми свойствами или новых белков, обеспечивающих защиту клетки и протекание метаболизма в ранее непригодных для жизни условиях. Конечным результатом такой адаптации является расширение экологических границ жизни растения.

7 . Пассивная адаптация

- «уход» от повреждающего действия стрессора или сосуществование с ним. Этот тип адаптации имеет огромное значение для растений, поскольку в отличие от животных они не способны убежать или спрятаться от действия вредного фактора. К пассивным адаптациям относятся, например, переход в состояние покоя, способность растений изолировать «агрессивные» соединения, такие как тяжелые металлы в стареющих органах, тканях или в вакуолях, т.е. сосуществовать с ними. Настоящим «уходом» от действующего фактора является очень короткий онтогенез растений-эфемеров, позволяющий им сформировать семена до наступления неблагоприятных условий. Так, например, в ответ на повышение температуры воздуха растение «уходит» от действующего фактора, понижая температуру тканей за счет транспирации, и одновременно активно защищает клеточный метаболизм от высокой температуры, синтезируя белки теплового шока.

В процессе адаптации растение проходит два различных этапа:

1) быстрый первичный ответ;

2) значительно более длительный этап, связанный с формированием новых изоэнзимов или стрессорных белков, которые обеспечивают протекание метаболизма в изменившихся условиях.

Быстрая первичная реакция растения на повреждающее воздействие называется стресс-реакцией, а следующая за ней фаза - специализированной адаптацией. В случае прекращения действия стрессора растение переходит в состояние восстановления.

8 . Классификация растений в зависимости от их температурного оптимума

По степени адаптации растений к условиям крайнего дефицита тепла можно выделить три группы:

1) нехолодостойкие растения- сильно повреждаются или гибнут при температурах, еще не достигающих точки замерзания воды. Гибель связана с инактивацией ферментов, нарушением обмена нуклеиновых кислот и белков, проницаемости мембран и прекращением тока ассимилятов. Это растения дождевых тропических лесов, водоросли теплых морей;

2) неморозостойкие растения- переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лед. При наступлении холодного времени года у них повышается концентрация осмотически активных веществ в клеточном соке и цитоплазме, что понижает точку замерзания до - (5-7)°С. Вода в клетках может охлаждаться ниже точки замерзания без немедленного образования льда. Переохлажденное состояние неустойчиво и длится чаще всего несколько часов, что, однако, позволяет растениям переносить заморозки. Таковы некоторые вечнозеленые субтропические растения - лавры, лимоны и др.;

3) льдоустойчивые, или морозоустойчивые, растения - произрастают в областях с сезонным климатом, с холодными зимами. Во время сильных морозов надземные органы деревьев и кустарников промерзают, но тем не менее сохраняют жизнеспособность, так как в клетках кристаллического льда не образуется. Растения подготавливаются к перенесению морозов постепенно, проходя предварительную закалку после того, как заканчиваются ростовые процессы. Закалка заключается в накоплении в клетках сахаров (до 20-30%), производных углеводов, некоторых аминокислот и других защитных веществ, связывающих воду. При этом морозоустойчивость клеток повышается, так как связанная вода труднее оттягивается образующимися во внеклеточных пространствах кристаллами льда.

Оттепели в середине, а особенно в конце зимы вызывают быстрое снижение устойчивости растений к морозам. После окончания зимнего покоя закалка утрачивается. Весенние заморозки, наступившие внезапно, могут повредить тронувшиеся в рост побеги и особенно цветки даже у морозоустойчивых растений.

По степени адаптации к высоким температурам можно выделить следующие группы растений:

1) нежаростойкие растения повреждаются уже при +(30-40)°С (эукариотические водоросли, водные цветковые, наземные мезофиты);

2) жаровыносливые растения переносят получасовое нагревание до +(50-60)°С (растения сухих местообитаний с сильной инсоляцией - степей, пустынь, саванн, сухих субтропиков и т. п.).

Некоторые растения регулярно испытывают влияние пожаров, когда температура кратковременно повышается до сотен градусов. Пожары особенно часты в саваннах, в сухих жестколистных лесах и кустарниковых зарослях типа чапарраля. Там выделяют группу растений-пирофитов, устойчивых к пожарам. У деревьев саванн на стволах толстая корка, пропитанная огнеупорными веществами, надежно защищающими внутренние ткани. Плоды и семена пирофитов имеют толстые, часто одревесневшие покровы, которые растрескиваются, будучи опалены огнем.

9 . Жароустойчивость растений

Жароустойчивость (жаровыносливость) -- способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют три группы растений.

Жаростойкие -- термофильные синезеленые водоросли и бактерии горячих минеральных источников, способные переносить повышение температуры до 75-100°С. Жароустойчивость термофильных микроорганизмов определяется высоким уровнем метаболизма, повышенным содержанием РНК в клетках, устойчивостью белка цитоплазмы к тепловой коагуляции.

Жаровыносливые -- растения пустынь и сухих мест обитания (суккуленты, некоторые кактусы, представители семейства Толстянковые), выдерживающие нагревание солнечными лучами до 50-65°С. Жароустойчивость суккулентов во многом определяется повышенными вязкостью цитоплазмы и содержанием связанной воды в клетках, пониженным обменом веществ.

Нежаростойкие -- мезофитные и водные растения. Мезофиты открытых мест переносят кратковременное действие температур 40-47°С, затененных мест -- около 40-42°С, водные растения выдерживают повышение температуры до 38-42°С. Из сельскохозяйственных наиболее жаровыносливы теплолюбивые растения южных широт (сорго, рис, хлопчатник, клещевина и др.).

Многие мезофиты переносят высокую температуру воздуха и избегают перегрева благодаря интенсивной транспирации, снижающей температуру листьев. Более жаростойкие мезофиты отличаются повышенной вязкостью цитоплазмы и усиленным синтезом жаростойких белков-ферментов.

Жароустойчивость во многом зависит от продолжительности действия высоких температур и их абсолютного значения. Большинство сельскохозяйственных растений начинает страдать при повышении температуры до 35-40°С. При этих и более высоких температурах нормальные физиологические функции растения угнетаются, а при температуре около 50°С происходят свертывание протоплазмы и отмирание клеток.

Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и других клеточных мембран, приводит к потере осмотических свойств клетки.

При действии высоких температур в клетках растений индуцируется синтез стрессовых белков (белков теплового шока). Растения сухих, светлых мест обитания более стойки к жаре, чем тенелюбивые.

Жароустойчивость в значительной степени определяется фазой роста и развития растений. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее устойчивы, чем старые и «покоящиеся». Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более -- побеги и почки.

10 . Физиолого-биохимические основы неспецифических и специфических реакций на стресс

Неспецифическими являются однотипные реакции организма на действие разнородных стрессоров или разных организмов на один и тот же стресс-фактор. К специфическим относят ответные реакции, качественно отличающиеся в зависимости от фактора и генотипа.

К первичным неспецифическим процессам, происходящим в клетках растений при действии любых стрессоров, относятся следующие:

1. Повышение проницаемости мембран, деполяризация мембранного потенциала плазмалеммы.

2. Вход ионов кальция в цитоплазму из клеточных стенок и внутриклеточных компартментов (вакуоль, эндоплазматическая сеть, митохондрии).

3. Сдвиг рН цитоплазмы в кислую сторону.

4. Активация сборки актиновых микрофиламентов цитоскелета, в результате чего возрастает вязкость и светорассеяние цитоплазмы.

5. Усиление поглощения кислорода, ускоренная трата АТФ, развитие свободнорадикальных процессов.

6. Повышение содержания аминокислоты пролина, которая может образовывать агрегаты, ведущие себя как гидрофильные коллоиды и способствующие удержанию воды в клетке. Пролин может связываться с белковыми молекулами, защищая их от денатурации.

7. Активация синтеза стрессовых белков.

8. Усиление активности протонной помпы в плазмалемме и, возможно, в тонопласте, препятствующей неблагоприятным сдвигам ионного гомеостаза.

9. Усиление синтеза этилена и абсцизовой кислоты, торможение деления и роста, поглотительной активности клеток и других физиологических процессов, осуществляющихся в обычных условиях.

11 . Показать генетическую последовательность реакций на стресс

Понятие специфичности и неспецифичности адаптивных реакций применяют, во-первых, определяя отношение организма (вида, сорта) к различным стрессорам, а во-вторых, характеризуя реакцию различных организмов (видов, сортов) на один и тот же стрессор. Важнейшей неспецифической реакцией клеток на действие стрессоров является синтез особых белков. Установлены гены, кодирующие белки и показано, что стресс индуцирует экспрессию целого ряда генов. Это позволяет судить, какие гены ответственны за устойчивость. Стрессовые белки синтезируются в растениях в ответ на различные воздействия: анаэробиоз, повышенные и пониженные температуры, обезвоживание, высокие концентрации соли, действие тяжелых металлов, вредителей, а также при раневых эффектах и ультрафиолетовой радиации. Стрессовые белки разнообразны и образуют группы высокомолекулярных и низкомолекулярных белков. Белки с одинаковой молекулярной массой представлены разными полипептидами. Это обусловлено тем, что каждую группу белков кодирует не один ген, а семейство близких генов. После завершения синтеза белка могут происходить различные модификации, например, обратимое фосфорилирование. Защитная роль стрессовых белков в растении подтверждается фактами гибели клетки при введении ингибиторов синтеза белка в период действия стрессора. С другой стороны изменения в структуре гена, повреждающие синтез белков, приводят к потере устойчивости клеток. В результате изменения действия фактора или факторов происходит переключение жизни клетки на стрессовую программу. Это осуществляется одновременно на многих уровнях регуляции. Тормозится экспрессия генов, активность которых характерна для жизни клетки в нормальных условиях, и активируются гены стрессового ответа. Активирование генов стресса происходит благодаря рецепции сигнала и соответствующей сигнальной цепи. Абиотические стресс-факторы (избыток солей, повышенная температура и др.) по-видимому, активируют рецепторы в плазматической мембране. Там начинается сигнальная цепь, которая через различные интермедиаты, такие как протеинкиназы, фосфатазы приводит к образованию транскрипционного фактора. Эти факторы в ядре активируют гены путем связывания со специфическими промоторами. Последовательность реакций следующая: стресс- сигнал -> рецептор в плазмалемме -> сигнальная цепь в цитозоле --> транскрипционный фактор в ядре --> промотор стресс-индуцированного гена ->мРНК -> белок -> защитная роль в растении.

12 . Что такое кросс-адаптация?

Перекрестные или кросс - адаптации это адаптации, при которых развитие устойчивости к одному фактору, повышает резистентность к сопутствующему.

13 . Классификация растений по отношению к свету. Примеры

По отношению к свету все растения, в том числе и лесные деревья подразделяются следующие экологические группы:

гелиофиты (светолюбивые), требующие много света и способные переносить лишь незначительное затенение (к светолюбивым относятся почти все кактусы и другие суккуленты, многие представители тропического происхождения, некоторые субтропические кустарники) сосна, пшеница, лиственница (мощная кутикула, много устьиц);

сциофиты (тенелюбивые)- довольствующиеся наоборот незначительным освещением и могущие существовать в тени (к теневыносливым относятся различные хвойные растения, многие папоротники, некоторые декоративно-лиственные растения);

теневыносливые (факультативные гелиофиты).

Гелиофиты. Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.

мелкие размеры листьев; встречается сезонный диморфизм: весной листья мелкие, летом - крупнее;

листья располагаются под большим углом, иногда почти вертикально;

листовая пластинка блестящая или густо опушенная;

образуют разряженные насаждения.

Сциофиты. Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, костынь, сныть).

Характеризуются следующими признаками:

листья крупные, нежные;

листья темно-зеленого цвета;

листья подвижные;

характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья макимально не заслоняют друг друга).

Теневыносливые. Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.

Причины этого различия нужно искать, прежде всего, в специфических особенностях хлорофилла, затем в различной архитектонике видов (в строении побегов, расположении и форме листьев). Распределив лесные деревья сообразно с их потребностью в свете, проявляющейся в их состязании, когда они растут вместе, и, ставя наиболее светолюбивые вперед, мы получим приблизительно следующие ряды.

1) Лиственница, береза, осина, ольха

2) ясень, дуб, вяз

3) ель, липа, граб, бук, пихта.

Замечательно и биологически важно обстоятельство, что почти все деревья в молодости могут переносить большее затенение, чем в более зрелом возрасте. Дальше следует заметить, что способность переносить затенение находится в известной зависимости от плодородия почвы.

Растения делят на:

1. длиннодневные 16-20 ч. длина дня - умеренных зона, северной широты,

2. короткодневные ночь равен дню - экваториальные широты,

3. нейтральные - клен американский, одуванчик лекарственный и др.

14 . Особенности теневыносливых растений и их характеристика

Теневыносливые растения, растения (главным образом древесные, многие травянистые под пологом лиственных пород, тепличные и др.), выносящие некоторое затенение, но хорошо развивающиеся и на прямом солнечном свету. Физиологически Т. р. характеризуются относительно невысокой интенсивностью фотосинтеза. Листья Т. р. имеют ряд анатомо-морфологических особенностей: слабо дифференцирована столбчатая и губчатая паренхима, клетки содержат небольшое число (10--40) хлоропластов, величина поверхности которых колеблется в пределах 2--6 см2 на 1 см2 площади листа. Ряд растений под пологом леса (например, копытень, сныть и др.) ранней весной, до распускания листьев древесного яруса, физиологически светолюбивы, а летом, при сомкнувшемся пологе, -- теневыносливы.

Теневыносливые растения -- растения, толерантные к затенению, произрастающие преимущественно в тенистых местообитаниях (в отличие от светолюбивых растений, гелиофитов), но также хорошо развивающиеся и на открытых участках с большим или меньшим количеством прямого солнечного света (в отличие от тенелюбивых растений, сциофитов). Теневыносливые растения рассматриваются в экологии растений как промежуточная группа между гелиофитами и сциофитами; их определяют как факультативные гелиофиты.

Особенности морфологии и физиологии теневыносливых растений

Мозаичное расположение листьев способствует лучшему улавливанию рассеянного света. Листья клёна сахарного

Теневыносливые растения характеризуются относительно невысокой интенсивностью фотосинтеза. Их листья по ряду важных анатомо-морфологических признаков отличаются от листьев гелиофитов. В листе теневыносливых растений обычно слабо дифференцирована столбчатая и губчатая паренхима; характерны увеличенные межклеточные пространства. Эпидермис довольно тонкий, однослойный, клетки эпидермиса могут содержать хлоропласты (чего никогда не встречается у гелиофитов). Кутикула обыкновенно тонкая. Устьица обычно размещены на обеих сторонах листа с несущественным преобладанием на оборотной стороне (у светолюбивых растений, как правило, на лицевой стороне устьица отсутствуют или расположены преимущественно на оборотной стороне). По сравнению с гелиофитами у теневыносливых растений значительно ниже содержание хлоропластов в клетках листа -- в среднем от 10 до 40 на клетку; суммарная поверхность хлоропластов листа ненамного превышает его площадь (в 2--6 раз; тогда как у гелиофитов превышение составляет в десятки раз).

Для некоторых теневыносливых растений характерно образование антоциана в клетках при произрастании на ярком солнце, что придаёт красноватую или буроватую окраску листьям и стеблям, нехарактерную в естественных условиях местообитания. У других при произрастании при прямом солнечном освещении отмечается более бледная окраска листьев.

Внешний облик теневыносливых растений также отличается от светолюбивых. Теневыносливые растения обычно обладают более широкими, более тонкими и мягкими листьями, чтобы улавливать больше рассеянного солнечного света. По форме они обычно плоские и гладкие (тогда как у гелиофитов часто встречается складчатость, бугорчатость листьев). Характерно горизонтальное расположение листвы (у гелиофитов листья нередко расположены под углом к свету) и листовая мозаика. Лесные травы обычно вытянуты, высоки, имеют удлинённый стебель.

Многие теневыносливые растения обладают высокой пластичностью своего анатомического строения в зависимости от освещённости (прежде всего это касается строения листьев). Например, у бука, сирени, дуба листья, образовавшиеся в тени, обыкновенно имеют существенные анатомические отличия от листьев, выросших при ярком солнечном освещении.

К теневыносливым относятся некоторые корнеплодные (редис, репа) и пряные растения (петрушка, мелисса, мята). Относительно теневынослива вишня обыкновенная (одно из немногих теневыносливых плодовых деревьев); теневыносливы некоторые ягодные кустарники (смородина, ежевика, некоторые сорта крыжовника) и травянистые растения (земляника садовая, брусника).

Некоторые теневыносливые растения -- ценные кормовые культуры. Выращиваемая для этих целей вика посевная используется к тому же ещё и в качестве сидерата.

15. Светолюбивые растения и их анатомо-физиологические особенности

Светолюбивые растения, гелиофиты, растения, произрастающие на открытых местах и не выносящие длительного затенения; для нормального роста им необходима интенсивная солнечная или искусственная радиация. Взрослые растения более светолюбивы, чем молодые. К С. р. относятся как травянистые (подорожник большой, кувшинка и др.), так и древесные (лиственница, акация и др.) растения, ранневесенние -- степей и полупустынь, а из культурных -- кукуруза, сорго, сахарный тростник и др. С. р. имеют ряд анатомо-морфологических и физиологических особенностей: относительно толстые листья с мелкоклеточной столбчатой и губчатой паренхимой и большим числом устьиц. В клетках листа содержится от 50 до 300 мелких хлоропластов, поверхность которых в десятки раз превышает поверхность листа. По сравнению с теневыносливыми растениями листья С. р. содержат больше хлорофилла на единицу поверхности и меньше -- на единицу массы листа. Характерный физиологический признак С. р. -- высокая интенсивность фотосинтеза, (гелиофиты).

Растения, не выносящие длительного затенения. Это растения открытых мест обитания: степные и луговые травы, наскальные лишайники, растения альпийских лугов, прибрежные и водные (с плавающими листьями), ранневесенние травянистые растения листопадных лесов.

К светолюбивым деревьям относятся: саксаул, гледичия, робиния лжеакация, альбиция, береза, лиственница, кедры атласский и ливанский, сосна обыкновенная, ясень обыкновенный, софора японская, шелковица белая, вяз приземистый, бархат амурский, орех грецкий, тополя черный и белый, осина, дуб обыкновенный; к кустарникам - лох узколистный, аморфа, олеандр и др. Более требовательны к свету рассечено листные, золотистые, бело пестролистные формы древесных пород и кустарников. У светолюбивых растений листья обычно мельче, чем у теневыносливых. Листовая пластинка у них расположена вертикально или под большим углом к горизонтальной плоскости, чтобы днем листья получали лишь скользящие лучи. Такое расположение листьев характерно для эвкалипта, мимозы, акации, многих степных травянистых видов. Поверхность листа блестящая (лавр, магнолия), покрыта светлым восковым налетом (кактусы, молочаи, толстянковые) или густо опушена, имеется толстая кутикула. Внутреннее строение листа отличается своими особенностями: палисадная паренхима хорошо развита не только на верхней, но и на нижней стороне листа, клетки мезофилла мелкие, без крупных межклетников, устьица мелкие, многочисленные. светолюбивые растения р. характеризуются высокой интенсивностью фотосинтеза, замедляя ростовые процессы, более чутко реагируют на недостаток света. Требовательность к свету изменяется с возрастом растения и зависит от условий внешней среды. Один и тот же вид более теневынослив в молодости. При перемещении (в культуре) древесной породы из теплых районов в более холодные потребность ее в свете увеличивается, на что влияют и условия питания растений. На плодородной почве растения могут развиваться с менее интенсивным освещением, на бедной почве потребность в свете возрастает.

16. Тенелюбивые растения и их анатомо-физиологические особенности

Растения, которые не выносят сильного освещения. К ним относятся, напр., многие лесные травы (кислица, майник и др.). При рубке леса, оказавшись на свету, они обнаруживают признаки угнетения и гибнут. Наибольшая интенсивность фотосинтеза наблюдается у таких растений при умеренном освещении.

17. Влияние температуры на рост и развитие растений. Классификация растений

Большинство сельскохозяйственных растений начинает страдать при повышении температуры до 35--40°С. При этих и более высоких температурах нормальные физиологические функции растения угнетаются, а при температуре около 50°С происходят свертывание протоплазмы и отмирание клеток. Превышение оптимального температурного уровня приводит к частичной или глобальной денатурации белков. Это вызывает разрушение белково-липидных комплексов плазмаллемы и других клеточных мембран, приводит к потере осмотических свойств клетки. В результате наблюдаются дезорганизация многих функций клеток, снижение скорости различных физиологических процессов. Так, при температуре 20°С все клетки проходят процесс митотического деления, при 38°С митоз отмечается в каждой седьмой клетке, а повышение температуры до 42°С снижает число делящихся клеток в 500 раз (одна делящаяся клетка на513 неделящихся). При максимальных температурах расход органических веществ на дыхание превышает его синтез, растение беднеет углеводами, а затем начинает голодать. Особенно резко это выражено у растений более умеренного климата (пшеница, картофель, многие огородные культуры).

Фотосинтез более чувствителен к действию высоких температур, чем дыхание. При субоптимальных температурах растения прекращают рост и фотоассимиляцию, что обусловлено нарушением деятельности ферментов, повышением дыхательного газообмена, снижением его энергетической эффективности, усилением гидролизаполимеров, в частности белка, отравлением протоплазмы вредными для растения продуктами распада (аммиак и др.). У жаростойких растений в этих условиях увеличивается содержание органических кислот, связывающих избыточный аммиак.

Способом защиты от перегрева может служить усиленная транспирация, обеспечиваемая мощной корневой системой. В результате транспирации температура растений снижается иногда на 10--15°С. Завядающие растения, с закрытыми устьицами, легче погибают от перегрева, чем достаточно снабженные водой. Растения сухую жару переносят легче, чем влажную, так как во время жары при высокой влажности воздуха регуляция температуры листьев за счет транспирации ограничена.

Повышение температуры особенно опасно при сильной инсоляции. Для уменьшения интенсивности воздействия солнечного света растения располагают листья вертикально, параллельно его лучам (эректоидно). При этом хлоропласты активно перемещаются в клетках мезофилла листа, как бы уходя от избыточной инсоляции. Растения выработали систему морфологических и физиологических приспособлений, защищающих их от тепловых повреждений: светлую окраску поверхности, отражающую инсоляцию; складывание и скручивание листьев; опушения или чешуйки, защищающие от перегрева глубжележащие ткани; тонкие слои пробковой ткани, предохраняющие флоэму и камбий; большую толщину кутикулярного слоя; высокое содержание углеводов и малое -- воды в цитоплазме и др.В полевых условиях особенно губительно совместное действие высоких температур и обезвоживания. При длительном и глубоком завядании угнетаются не только фотосинтез, но и дыхание, что вызывает нарушение всех основных физиологических функций растения. Наибольший вред высокие температуры причиняют растениям на ранних этапах их развития, так как молодые, активно растущие ткани менее устойчивы, чем старые и «покоящиеся».Устойчивость к жаре у различных органов растений неодинаковая: менее устойчивы подземные органы, более -- побеги и почки. На тепловой стресс растения очень быстро реагируют индуктивной адаптацией. В период образования генеративных органов жаростойкость однолетних и двулетних растений снижается. Вредное действие повышенных температур -- одна из важнейших причин значительного снижения урожаев ранних яровых при запаздывании с их посевом. Например, у пшеницы в фазе кущения в конусе нарастания идет дифференциация колосков. Высокая температура почвы и воздуха приводит к повреждению конуса нарастания, ускоряет процесс и сокращает время прохождения IV--V этапов, в результате уменьшается число колосков в колосе, а также число цветков в колоске, что приводит к снижению урожая.

Развитие растений, их рост и другие физиологические процессы совершаются в определенных температурных условиях. При этом каждый вид растения имеет температурные минимумы, оптимумы и максимумы для каждого физиологического процесса. Поэтому тепло является важным экологическим фактором, определяющим жизнь отдельного растения, распределение видов растений по земной поверхности, формирование типов растительности.

Для каждого вида растений нужно различать две температурные границы: минимальную и максимальную, т. е. такие температуры, при которых прекращаются жизненные процессы в растениях, и оптимальную температуру, наиболее благоприятную для жизнедеятельности растений. Для различных физиологических процессов (фотосинтез, дыхание, рост) у одного и того же вида растения положение этих границ неодинаково. Различно оно и для фенологических фаз у древесных пород. Например, рост побегов у ели и пихты начинается при температуре от +7 до +10°, а цветение - при более высоких температурах, выше +10°. Такие породы, как ольха, осина, лещина, ива, цветут при более низких температурах, а рост побегов у них происходит значительно позже при более высоких температурах.

Для всех жизненных процессов растений характерно, что оптимальные температуры для них ближе к максимальным, чем к минимальным. Если рост у сосны происходит в температурных пределах от +7 до +34°, то оптимальной является температура от + 25 до +28°.

Семена многих растений, в том числе и древесных, для своевременного нормального прорастания требуют предварительного воздействия на них низких температур. На этом принципе основана стратификация семян некоторых древесных растений: ясеня, липы, бересклета, боярышника. Также быстрее происходит после действия низких температур распускание листовых и цветочных почек у древесных растений.

Более высокую температуру лучше переносят растения, если они содержат мало воды (особенно семена и споры растений) или если они находятся в состоянии покоя (растения пустынь).

Защитой от перегрева растений является транспирация, которая существенно понижает температуру тела растения. Накопление в клетках растений солей также повышает устойчивость их протоплазмы к свертыванию под действием высокой температуры. Это особенно распространено у растений пустынь (саксаул, солянка). У всходов и однолетних сеянцев древесных растений высокая температура, кроме высушивания, вызывает иногда опал шейки корня.

Минимальная температура имеет большую амплитуду для различных видов растений. Так, некоторые тропические растения повреждаются от холода уже при температуре +5°, а ниже нуля гибнут (например, некоторые орхидеи). Причиной гибели растений от холода является главным образом потеря клетками воды. Образовавшиеся в межклетниках кристаллы льда вытягивают из клеток воду, иссушая их и разрушая. Поэтому растения и их части, содержащие мало воды, лучше переносят низкие температуры (например, лишайники, сухие семена и споры растений).

Во многих случаях для растения вредна не сама низкая температура, которая приводит к замерзанию, а быстрое оттаивание или чередование оттаивания с замерзанием. Однако некоторые растения, например сфагновые мхи, хотя и содержат в себе много воды, могут быстро замерзать и оттаивать без вреда для жизни.

Очень низкие зимние температуры (-40 - 45°) одни древесные породы переносят без вреда (сосна, лиственница, кедр сибирский, береза, осина), другие породы повреждаются. При этом характер и степень повреждения бывают различными. У ели европейской частично или полностью повреждается однолетняя хвоя и даже покоящиеся почки. У дуба, ясеня, клена остролистного отмирают покоящиеся почки; в этом случае деревья долго, до конца июня, остаются без листьев, пока спящие почки не прорастут и не восстановят нормальное облиствение кроны. Иногда покоящиеся почки остаются неповрежденными, но очень сильно повреждается морозом камбий ствола и ветвей, что является особенно опасным, так как после этого весной почки распускаются, но вскоре молодые побеги вянут, и дерево полностью отмирает. Это наблюдается у некоторых тополей, молодых деревьев черной ольхи, яблони.

При переохлаждении наружных частей ствола во время резких понижений температуры зимой иногда происходит продольный разрыв поверхности ствола и образуются морозобойные трещины, что ослабляет дерево и портит качество древесины. Хвойные деревья иногда страдают от ранневесеннего нагрева, когда оттаявшая хвоя начинает уже испарять воду, а из замерзших частей ствола и корней вода еще не поступает. Такое явление называется солнечным ожогом, оно приводит к побурению более молодой, обычно однолетней хвои.

По-разному относятся деревья к поздневесенним заморозкам, которые бывают в начале вегетационного периода, когда температура в нижних слоях атмосферы (до высоты 3 - 4 м) в ночное время снижается до -3 - 5°. Тогда у молодых деревьев побеги, только что появившиеся после распускания почек, повреждаются в такой степени, что иногда совершенно отмирают; к таким породам относятся ель, пихта, дуб, ясень.

По отношению к теплу древесные растения, естественно растущие или разводимые в СССР, классифицируют следующим образом:

1. Вполне холодостойкие, совершенно не повреждающиеся низкими зимними температурами, переносящие морозы до -45-50°, а некоторые и ниже, не повреждающиеся поздними весенними заморозками. К таким древесным растениям относятся лиственницы сибирская и даурская, сосна обыкновенная, ель сибирская, кедры сибирский и стланиковый, можжевельник обыкновенный, осина, березы пушистая и бородавчатая, ольха серая, рябина, ива козья, тополь душистый.

2. Холодостойкие, переносящие суровые зимы, но повреждающиеся очень сильными морозами (ниже - 40°). У одних повреждается хвоя, у других - покоящиеся почки. Некоторые виды этой группы повреждаются поздневесенними заморозками. К ним относятся ель европейская, пихта сибирская, ольха черная, липа мелколистная, вяз, ильм, клен остролистный, тополя черный и белый.

3. Сравнительно теплолюбивые с более длинным вегетационным периодом, вследствие чего однолетние побеги их не всегда успевают одревеснеть и побиваются морозами частично или полностью; все растения сильно повреждаются очень низкими зимними температурами; многие из них повреждаются поздневесенними заморозками. К таким породам относятся дубы летний и зимний, ясень обыкновенный, липа крупнолистная, граб, берест, бархатное дерево, орех маньчжурский, бересклеты, тополь канадский.

4. Теплолюбивые с еще более длинным вегетационным периодом, побеги их часто не вызревают и погибают от морозов. В сильные продолжительные морозы у таких растений погибает полностью надземная часть, и возобновление ее происходит от спящих почек у шейки корня. К таким породам относятся тополь пирамидальный, орех грецкий, каштан настоящий, шелковица, акация белая.

5. Очень теплолюбивые, которые совершенно не переносят или плохо переносят продолжительные морозы до -10-15°. При такой температуре в продолжение нескольких дней они или совершенно погибают, или сильно повреждаются; к ним относятся кедр настоящий, кипарис, эвкалипт, цитрусовые, дуб пробковый, магнолия крупноцветная, акация шелковая.

Резкой границы между указанными группами провести нельзя, многие древесные растения занимают промежуточное положение. Увеличение холодостойкости одного и того же вида также зависит от условий местопроизрастания. Однако все это не исключает необходимости сравнительной характеристики и классификации древесных растений по отношению к теплу.

18. Холодоустойчивость у растений

Подобные документы

    Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа , добавлен 07.11.2015

    Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

    контрольная работа , добавлен 17.04.2019

    Стресс как совокупность неспецифических адаптационных реакций организма на воздействие неблагоприятных факторов. Оксидативный стресс. Психологические реакции населения, проживающего на радиоактивно загрязнённых территориях, на радиационную угрозу.

    презентация , добавлен 03.05.2017

    Активирование определенных ферментативных систем растений с помощью микроэлементов. Роль почвы как комплексного эдафического фактора в жизни растений, соотношение микроэлементов. Классификация растений в зависимости от потребности в питательных веществах.

    курсовая работа , добавлен 13.04.2012

    Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат , добавлен 07.05.2015

    Сущность понятия "фотопериодизм". Нейтральные, длиннодневные, короткодневные растения. Свет и его роль в жизни растений. Экологические группы растений по отношению к свету. Адаптация растений к световому режиму. Локализация фотопериодических реакций.

    курсовая работа , добавлен 20.05.2011

    Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа , добавлен 01.03.2002

    Таксономические единицы растительного мира, систематика растений, их значение в питании диких животных и человека. Строение и функции эпидермы листа; классификация, биологическое значение почек. Экологические группы растений по отношению к составу почвы.

    контрольная работа , добавлен 06.02.2012

    Влияние света на питание и испарение. Значение света для распределения растений. Сила света и направление световых лучей. Классификация растений по отношению к свету. Направление листьев и освещение. Различия в анатомическом строении.

    реферат , добавлен 21.01.2003

    Кардинальные температурные точки. Протекание процесса фотосинтеза с помощью света. Циркадные циклы. Ростовые движения: типизация, возможные механизмы. Адаптации растений к температурам. Новообразование специфических, устойчивых к обезвоживанию белков.

в биологии – развитие любого признака, который способствует выживанию вида и его размножению. Адаптации могут быть морфологическими, физиологическими или поведенческими.

Морфологические адаптации включают изменения формы или строения организма. Пример такой адаптации – твердый панцирь черепах, обеспечивающий защиту от хищных животных. Физиологические адаптации связаны с химическими процессами в организме. Так, запах цветка может служить для привлечения насекомых и тем самым способствовать опылению растения. Поведенческая адаптация связана с определенным аспектом жизнедеятельности животного. Типичный пример – зимний сон у медведя. Большинство адаптаций представляет собой сочетание перечисленных типов. Например, кровососание у комаров обеспечивается сложной комбинацией таких адаптаций, как развитие специализированных частей ротового аппарата, приспособленных к сосанию, формирование поискового поведения для нахождения животного-жертвы, а также выработка слюнными железами специальных секретов, которые предотвращают свертывание высасываемой крови.

Все растения и животные постоянно адаптируются к окружающей среде. Чтобы понять, как это происходит, необходимо рассматривать не только животное или растение в целом, но и генетическую основу адаптации.

Генетическая основа. У каждого вида программа развития признаков заложена в генетическом материале. Материал и закодированная в нем программа передаются от одного поколения другому, оставаясь относительно неизменными, благодаря чему представители того или иного вида выглядят и ведут себя почти одинаково. Однако в популяции организмов любого вида всегда присутствуют небольшие изменения генетического материала и, следовательно, вариации признаков отдельных особей. Именно из этих разнообразных генетических вариаций процесс приспособления отбирает те признаки или благоприятствует развитию таких признаков, которые в наибольшей степени увеличивают шансы на выживание и тем самым на сохранение генетического материала. Адаптация, таким образом, может рассматриваться как процесс, посредством которого генетический материал повышает свои шансы на сохранение в последующих поколениях. С этой точки зрения, каждый вид олицетворяет собой успешный способ сохранения определенного генетического материала.

Чтобы передать генетический материал, особь любого вида должна иметь возможность питаться, дожить до периода размножения, оставить потомство и затем распространить его на возможно большей территории.

Питание. Все растения и животные должны получать из окружающей среды энергию и различные вещества, прежде всего кислород, воду и неорганические соединения. Почти все растения используют энергию Солнца, трансформируя ее в процессе фотосинтеза (см. также ФОТОСИНТЕЗ) . Животные получают энергию, питаясь растениями или другими животными.

Каждый вид определенным образом приспособлен к тому, чтобы обеспечивать себя питанием. Ястребы имеют острые когти для захватывания добычи, а расположение глаз в передней части головы позволяет им оценить глубину пространства, что необходимо для охоты при полете на большой скорости. У других птиц, например цапель, развились длинные шея и ноги. Они добывают пищу, осторожно бродя по мелководью и подстерегая зазевавшихся водных животных. Дарвиновы вьюрки – группа близкородственных видов птиц с Галапагосских островов – представляют классический пример высокоспециализированной адаптации к разным способам питания. Благодаря тем или иным адаптивным морфологическим изменениям, в первую очередь в строении клюва, одни виды стали зерноядными, другие – насекомоядными.

Если обратиться к рыбам, то хищники, например акулы и барракуды, имеют острые зубы для поимки добычи. Другие, например мелкие анчоусы и сельди, добывают мелкие частицы пищи путем фильтрации морской воды через гребневидные жаберные тычинки.

У млекопитающих прекрасным примером адаптации к типу питания служат особенности строения зубов. Клыки и коренные зубы у леопардов и других кошачьих исключительно остры, что позволяет этим животным удерживать и разрывать тело жертвы. У оленей, лошадей, антилоп и других пастбищных животных большие коренные зубы имеют широкие ребристые поверхности, приспособленные для пережевывания травы и иной растительной пищи.

Разнообразные способы получения питательных веществ можно наблюдать не только у животных, но и у растений. Многие из них, в первую очередь бобовые – горох, клевер и другие – развили симбиотические, т.е. взаимовыгодные, отношения с бактериями: бактерии переводят атмосферный азот в химическую форму, доступную для растений, а растения предоставляют бактериям энергию. Насекомоядные растения, такие, как саррацения и росянка, получают азот из тел насекомых, пойманных ловчими листьями.

Защита. Окружающая среда состоит из живых и неживых компонентов. Живое окружение любого вида включает животных, питающихся особями этого вида. Адаптации хищных видов направлены на эффективную добычу пищи; виды-жертвы приспосабливаются, чтобы не стать добычей хищников.

Многие виды – потенциальные жертвы – имеют защитную или маскирующую окраску, которая скрывает их от хищников. Так, у некоторых видов оленей пятнистая шкура молодых особей незаметна на фоне чередующихся пятен света и тени, а зайцев-беляков трудно различить на фоне снежного покрова. Длинные тонкие тела насекомых-палочников тоже трудно увидеть, потому что они напоминают сучки или веточки кустов и деревьев.

У оленей, зайцев, кенгуру и многих других животных развились длинные ноги, позволяющие им убегать от хищников. Некоторые животные, например опоссумы и свиномордые ужи, даже выработали своеобразный способ поведения – имитацию смерти, которая повышает их шансы на выживание, поскольку многие хищники не едят падали.

Некоторые виды растений покрыты шипами или колючками, отпугивающими животных. Многие растения имеют отвратительный для животных вкус.

Факторы окружающей среды, в частности климатические, нередко ставят живые организмы в трудные условия. Например, животным и растениям часто приходится приспосабливаться к крайним значениям температуры. Животные спасаются от холода, используя изолирующий мех или перья, мигрируя в места с более теплым климатом или впадая в зимнюю спячку. Большинство растений переживает холода, переходя в состояние покоя, эквивалентное спячке у животных.

В жару охлаждение животного происходит за счет потоотделения или частого дыхания, увеличивающего испарение. Некоторые животные, в особенности пресмыкающиеся и земноводные, способны впадать в летнюю спячку, которая по сути аналогична зимней, но вызвана жарой, а не холодом. Другие просто ищут прохладное место.

Растения могут до некоторой степени поддерживать свою температуру, регулируя интенсивность испарения, которое имеет то же охлаждающее действие, что и потоотделение у животных.

Размножение. Критическим этапом в обеспечении непрерывности жизни является размножение – процесс, в ходе которого происходит передача генетического материала следующему поколению. Размножение имеет два важных аспекта: встречу разнополых особей для обмена генетическим материалом и выращивание потомства.

К числу адаптаций, обеспечивающих встречу особей разного пола, относится звуковая коммуникация. У некоторых видов большую роль в этом смысле играет обоняние. Например, котов сильно привлекает запах кошки в период течки. Многие насекомые выделяют т.н. аттрактанты – химические вещества, привлекающие особей противоположного пола. Запахи цветков являются эффективной адаптацией растений для привлечения насекомых-опылителей. Некоторые цветки сладко пахнут и привлекают питающихся нектаром пчел; другие пахнут отвратительно, привлекая мух, питающихся на падали.

Зрение тоже очень важно для встречи особей разного пола. У птиц брачное поведение самца, его пышные перья и яркая окраска привлекают самку и подготавливают ее к копуляции. Окраска цветка у растений часто указывает, какое животное необходимо для опыления этого растения. Например, цветки, опыляемые колибри, окрашены в красный цвет, который привлекает этих птиц.

Многие животные выработали способы защиты своего потомства в начальный период жизни. Большинство адаптаций такого рода относятся к поведенческим и включают такие действия одного или обоих родителей, которые повышают шансы на выживание детенышей. Большинство птиц строит гнезда, характерные для каждого вида. Однако некоторые виды, например воловья птица, откладывают яйца в гнезда других видов птиц и вверяют детенышей родительской заботе вида-хозяина. У многих птиц и млекопитающих, а также у некоторых рыб имеется период, когда один из родителей идет на большой риск, беря на себя функцию защиты потомства. Хотя такое поведение иногда грозит гибелью родителю, оно обеспечивает безопасность потомства и сохранение генетического материала.

Целый ряд видов животных и растений использует иную стратегию размножения: они производят на свет огромное число потомков и оставляют их незащищенными. В этом случае низкие шансы на выживание у отдельной подрастающей особи оказываются сбалансированы многочисленностью потомства. См. также РАЗМНОЖЕНИЕ.

Расселение. Большинство видов выработало механизмы для удаления потомства от тех мест, где оно появилось на свет. Этот процесс, называемый расселением, увеличивает вероятность того, что потомство будет подрастать на еще не занятой территории.

Большинство животных просто избегает мест, где слишком сильна конкуренция. Однако накапливаются свидетельства в пользу того, что расселение обусловлено генетическими механизмами.

Многие растения приспособились к распространению семян с помощью животных. Так, соплодия дурнишника имеют на поверхности крючочки, которыми они цепляются за шерсть проходящих мимо животных. Другие растения образуют вкусные мясистые плоды, например ягоды, которые поедаются животными; семена проходят через пищеварительный тракт и неповрежденными «высеваются» в другом месте. Для распространения растения используют и ветер. Например, ветром переносятся «пропеллеры» семян клена, а также семена ваточника, имеющие хохолки из тонких волосков. Степные растения типа перекати-поле, приобретающие к моменту созревания семян шарообразную форму, перегоняются ветром на большие расстояния, по пути рассеивая семена.

Выше были приведены лишь некоторые наиболее яркие примеры адаптаций. Однако практически каждый признак любого вида является результатом адаптации. Все эти признаки составляют гармоничную совокупность, что позволяет организму успешно вести свой особый образ жизни. Человек во всех его признаках, от структуры головного мозга до формы большого пальца на ноге, является результатом адаптации. Адаптивные признаки способствовали выживанию и размножению его предков, имевших те же самые признаки. В целом концепция адаптации имеет большое значение для всех направлений биологии. См. также НАСЛЕДСТВЕННОСТЬ.

ЛИТЕРАТУРА Левонтин Р.К. Адаптация . – В сб.: Эволюция. М., 1981

Половое размножение у семенных растений, к которым относятся цветковые и голосеменные, осуществляется с помощью семян. При этом обычно бывает важно, чтобы семена оказались на достаточно удаленном расстоянии от родительского растения. В этом случае больше шансов, что молодым растения не придется конкурировать за свет и воду как между собой, так и со взрослым растением.

Покрытосеменные (они же цветковые) растения в процессе эволюции растительного мира решили проблему распространения семян наиболее успешно. Они «изобрели» такой орган как плод.

Плоды служат приспособлением к определенному способу распространения семян. По-сути, чаще всего распространяются плоды, а семена вместе с ними. Поскольку способов распространения плодов достаточно много, то существует множество разновидностей плодов. Основными способами распространения плодов и семян являются следующие:

    с помощью ветра,

    животными (в том числе птицами и человеком),

    саморазбрасыванием,

    с помощью воды.

Плоды растений, которые распространяются ветром, имеют специальные приспособления, увеличивающие их площадь, но не увеличивающие их массу. Это различные пушистые волоски (например, плоды тополя и одуванчика) или крыловидные выросты (как у плодов клена). Благодаря таким образованиям, семена долго парят в воздухе, а ветер их относит всё дальше и дальше от родительского растения.

В степи и полупустыне нередко растения засыхают, и ветер обламывает их у корня. Перекатываемые ветром, засохшие растения рассыпают по местности свои семена. Таким «перекати-поле» растениям, можно сказать, не нужны даже плоды для распространения семян, так как с помощью ветра их распространяет само растение.

С помощью воды распространяются семена водных и околоводных растений. Плоды таких растений не тонут, а уносятся течением (например, у ольхи, растущей по берегам). Причем это не обязательно мелкие плоды. У кокосовой пальмы они крупные, но легкие, поэтому не тонут.

Приспособления плодов растений к распространению животными более разнообразные. Ведь животные, птицы и человек могут по-разному распространять плоды и семена.

Плоды некоторых покрытосеменных приспособлены к тому, чтобы цепляться за шерсть животных. Если, например, животное или человек пройдет рядом с репейником, то за него зацепится несколько колючих плодов. Рано или поздно животное их сбросит, но семена репейника окажутся уже относительно далеко от исходного места. Кроме репейника, примером растения с плодами-зацепками является череда. Ее плоды относятся к типу семянки. Однако у этих семянок есть маленькие шипы, покрытые зубчиками.

Сочные плоды позволяют растениям распространять их семена с помощью животных и птиц, которые поедают эти плоды. Но как же они их распространяют, если плод и семена вместе с ним съедены и переварены животным? Дело в том, что переваривается в основном сочная часть околоплодника плода, а вот семена - нет. Они выходят из пищеварительного тракта животного. Семена оказываются далеко от родительского растения и окружены пометом, который, как известно, неплохое удобрение. Поэтому сочный плод можно считать одним из самых успешных достижений эволюции живой природы.

Существенную роль в распространении семян сыграл человек. Так плоды и семена многих растений были случайно или намеренно завезены на другие континенты, где они смогли прижиться. В результате сейчас мы можем, например, наблюдать как в Америке растут растения, характерные для Африки, а в Африке - растения, родина которых Америка.

Существует вариант распространения семян с помощью разбрасывания, а точнее саморазбрасывания. Конечно, это не самых эффективный метод, так как семена оказываются всё-равно близко к материнскому растению. Однако такой способ нередко наблюдается в природе. Обычно разбрасывание семян характерно для плодов типа стручок, боб и коробочка. Когда боб или стручок засыхает, его створки скручиваются в разные стороны, и плод растрескивается. Из него с небольшой силой вылетают семена. Так распространяют свои семена горох, акация и другие бобовые.

Плод коробочка (например, у мака) колышется на ветру, и их него высыпаются семена.

Однако саморазбрасывание характерно не только для сухих семян. Например, у растения под названием бешеный огурец семена вылетают их сочного плода. В нем скапливается слизь, которая под давлением выбрасывается вместе с семенами.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные