Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Существует пять видов движения твердого тела:

  1. поступательное движение;
  2. вращение вокруг неподвижной оси;
  3. плоское движение;
  4. вращение вокруг неподвижной точки;
  5. свободное движение.

Первые два называются простейшими движениями твердого тела. Остальные виды движений можно представить как комбинацию основных движений.

Определение

Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.

Любое прямолинейное движение является поступательным. Однако поступательное движение не следует смешивать с прямолинейным. При поступательном движении тела траектории его точек могут быть любыми кривыми линиями.

Рис.1 Поступательное криволинейное движение кабин колеса обзора

Теорема

Свойства поступательного движения определяются следующей теоремой: при поступательном движении все точки тела описывают одинаковые (при наложении совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения.

Из теоремы следует, что поступательное движение твердого тела определяется движением какой-нибудь одной из его точки. Следовательно, изучение поступательного движения тела сводится к задаче кинематике точки.

При поступательном движении общую для всех точек тела скорость $\overrightarrow {v}$ называют скоростью поступательного движения тела, а ускорение $\overrightarrow {a}$ - ускорением поступательного движения тела. Векторы $\overrightarrow {v}$ и $\overrightarrow {a}$ можно изображать приложенными в любой точке тела.

Заметим, что понятие о скорости и ускорении тела имеют смысл только при поступательном движении. Во всех остальных случаях точки тела, движутся с разными скоростями и ускорениями, и термины «скорость тела» или «ускорение тела» для этих движений теряют смысл.

Вращательным движением абсолютно твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения, и описывают окружности, центры которых лежат на этой оси.

Для определения положения вращающегося тела проведем через ось вращения, вдоль которой направим ось Az, полуплоскость - неподвижную и полуплоскость, врезанную в само тело и вращающуюся вместе с ним (рис. 2).

Рисунок 2. Угол поворота тела

Тогда положение тела в любой момент времени однозначно определится взятым с соответствующим знаком углом $\varphi $ между этими полуплоскостями, который назовем углом поворота тела. Будем считать угол $\varphi $ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца оси Az), и отрицательным, если по ходу часовой стрелки. Измерять угол $\varphi $ будем всегда в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость угла $\varphi $ от времени t, т.е. ${\mathbf \varphi }$=f(t). Это уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

При вращательном движении абсолютно твердого тела вокруг неподвижной оси углы поворота радиуса-вектора различных точек тела одинаковы.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость $\omega $ и угловое ускорение $\varepsilon $.

Уравнения, описывающие вращательное движение, можно получить из уравнений поступательного движения, произведя в последних следующие замены: перемещение s --- угловое перемещение (угол поворота) $\varphi $, скорость u --- угловая скорость $\omega $, ускорение a --- угловое ускорение $\varepsilon $.

Что представляет собой поступательное движение? Школьный учебник ясно отвечает нам на этот вопрос: поступательное движение тела (заметим, идеального объекта - "абсолютно твердого тела" - АТТ, лишенного каких бы то ни было возможностей быть деформированным!) - это такое движение, при котором любая прямая, проведенная внутри тела (АТТ) остается параллельна самой себе во всё время движения .

Казалось бы, ответ исчерпывающий. Определение дано, и на повестку дня выступает кинематика поступательного движения. Поначалу это простейший случай затем - более сложное и интересное для пытливых умов равнопеременное (и вновь строго прямолинейное!) движение, ярким примером которого является свободное падение тел. В рамках этого раздела ученик знакомится с интересными закономерностями, формулируемыми следующим образом:

1. Пути, проходимые телом за последовательные промежутки времени, соотносятся как квадраты натурального ряда чисел : 1:4:9:16 ...

2. Пути, проходимые телом за равные последовательные промежутки времени, соотносятся как ряд нечетных чисел : 1:3:5:9 ...

При решении задач возникает, в рамках необходимого методологического и математического инструментария, любопытный метод обратимости движения , в котором все конечные данные становятся начальными и наоборот (движение как бы происходит в обратную сторону, с обратным отсчетом времени). В части динамики обратного процесса вектора мгновенной скорости во всех точках прямолинейной траектории меняют свое направление на противоположное, неизменным остается только направление вектора ускорения, генетически связанного с вектором равнодействующей всех приложенных к телу сил.

Раздел "Динамика так же, как и кинематика, априори подразумевает, что движение тела является строго поступательным, без поворотов вокруг какой бы то ни было оси и деформаций. Именно благодаря этим заранее оговоренным условиям можно пренебречь размерами самого тела в условиях задач, рассматривая вместо него идеальный объект - (МТ), пространственно совпадающую с центром тяжести (ЦТ) тела. Впрочем, объект МТ вводится ранее в разделе "Кинематика" для случаев, когда размерами тела можно пренебречь по сравнению с длиной траектории.

Законы сохранения в случае прямолинейного движения также рассматриваются при условиях, когда мы абстрагируемся от возможного вращения тела, полагая его движение поступательным (иначе следовало бы рассматривать взаимные переходы энергии вращательного движения в энергию движения поступательного и наоборот)

Одним словом, рассматриваемое в школьном курсе физики поступательное движение (узко представленное частным случаем движения вдоль прямой!) дает немалую пищу для теоретических размышлений и изысканий. Чего не скажешь об экспериментальной части раздела школьного курса, изучающего поступательное движение. Качественная экспериментальная установка попросту отсутствует в большинстве школьных кабинетов.

Даже частный случай прямолинейного поступательного движения изучается преимущественно в теории. Настоящая, а не Атвуда громоздка и быстро выводится из строя пытливыми школьниками, будучи стационарно установленной где-нибудь у дальней стены кабинета физики. Демонстрационные установки наподобие скользящего вдоль натянутой проволоки груза и вовсе бессмысленны, так как они дублируют самодовлеющий случай прямолинейного движения, что отнюдь не тождественно поступательному движению в самом общем случае. Что тут можно было бы порекомендовать? Только исследовательский поиск в окружающей нас реальности за пределами физического кабинета с использованием природной смекалки!

Приводимый учебником пример колеса обозрения ("Чертова колеса"), обод и спицы которого совершают а наблюдательные кабинки движутся поступательно (хотя и по окружности!) убеждает нас в том, что поступательное движение АТТ (и приближенно - реального тела) может быть не только прямолинейным, но и иметь любую криволинейную траекторию (в приведенном случае типологически совпадающую с траекторией вращательного движения МТ).

Идея поиска случаев поступательного движения на детской игровой площадке (в режиме эксперимента, а не теоретического рассуждения) "лежит где-то рядом" с "Чертовым колесом". Придя на детскую площадку, мы сможем проверить, остается ли параллельной сама себе прямая (моделируемая любым прутиком или тонкой рейкой) при движении тела на всевозможных качелях, каруселях и тренажерах. Ясно, что поступательным здесь будет разве что неодушевленного тела, сорвавшегося с какой-нибудь "лазалки".

Убедившись в том, что в чистом виде поступательное движение чаще всего встречается в природе как частный случай - поступательное прямолинейное движение, мы с легким сердцем можем переходить к теоретическому материалу школьного учебника.

Механика рассматривает всевозможные движения материальной точки и твердого тела. Все они описываются в нескольких разделах. К примеру, вопрос о том, как они движутся, будет прерогативой кинематики. В ней подробно описывается поступательное движение, а также более сложное - вращательное. Сначала о том, что проще. Потому что без этого сложно переходить к следующим темам.

Какие допущения позволяет механика?

Во многих задачах разрешено вводить приближение. Это связано с тем, что оно не окажет влияния на результат, зато упростит ход рассуждений.

Первое приближение связано с размерами тела. Если рассматриваемое тело существенно меньше других, находящихся с ним в одной системе отсчета, то его размерами пренебрегают. А само тело превращается в материальную точку.

Второе следует из отсутствия деформации у тела во время его перемещения. Или хотя бы настолько ее незначительной величины, которой вполне можно пренебречь.

В чем заключается поступательное движение тела?

Для пояснения потребуется рассмотреть две любые точки внутри твердого тела. Их нужно соединить отрезком. Если этот отрезок во время перемещения остается параллельным начальному положению, то говорят, что это - поступательное движение.

Если наблюдается пренебрежение размерами тела и рассматривается материальная точка, то отрезок отсутствует и она сама перемещается вдоль прямой.

Яркие примеры такого движения

Первое, о чем можно вспомнить — это кабина лифта. Она идеально иллюстрирует поступательное движение тела. Лифт всегда перемещается строго вверх или вниз без какого-либо вращения.

Следующим примером, иллюстрирующим поступательное движение, называют перемещение кабины колеса обозрения. Однако это реально только в ситуации, когда не учитывается небольшой наклон кабинки в начале каждого смещения.

Третья ситуация, когда можно говорить о поступательном движении, связана с движением педалей велосипеда. Их перемещение рассматривается относительно рамы. Здесь опять же вводится допущение, что ступни человека во время езды не качаются.

Завершить список можно перемещением поршней, которые колеблются внутри цилиндров двигателя внутреннего сгорания.

Главные понятия

Кинематика поступательного движения заключается в том, что изучает и описывает перемещение твердых тел и материальных точек. При этом она не рассматривает причины, которые тело к этому принуждают. Чтобы описать движение, потребуются координаты для указания его положения в пространстве. К тому же потребуется знание о скорости, причем в каждый конкретный момент времени.

Сначала стоит вспомнить о траектории. Она является линией, по которой двигалось тело.

Первым требуется ввести перемещение. Оно представляет собой вектор, который обозначается латинской буквой r. Он может соединять начало координат с положением материальной точки. В других случаях этот вектор проводится от начальной до конечной точки траектории. Единицы измерения перемещения — это метры.

Вторая величина, заслуживающая внимания, - путь. Он равен длине траектории, по которой двигалось тело. Обозначается путь буквой латинского алфавита S, которая тоже измеряется в метрах.

Основные формулы

Теперь настало время скорости. Она тоже является вектором. Причем характеризует не только направление движения тела, но и быстроту его перемещения. Вектор скорости всегда направлен вдоль касательной линии, которую можно провести к любой точке траектории. Обозначается она буквой V. Единицы ее измерения — м/с.
Скорость в каждое мгновение движения можно определить как производную перемещения по времени. Если в задаче идет речь о равномерном движении, то справедлива следующая формула:

  • V = S: t, где t — время движения.

В ситуации, когда направление движения изменяется, приходится использовать сумму всех перемещений.

Следующая величина — ускорение. Снова векторная величина, которая направлена в сторону скорости с большим значением. Определяется она как первая производная от скорости по времени. Принятое обозначение — буква «а». Размерность указывается в м/с 2 .

Формулы для каждой составляющей ускорения, направленных вдоль осей, вычисляется как отношение изменения скорости вдоль этой оси к промежутку времени. Если сделать математическую запись, то получится следующее:

  • а х = ∆V х: ∆t.

Для проекций ускорения на другие оси формулы аналогичны.
К тому же при рассмотрении движения по траектории с изгибами существует возможность разложить вектор ускорения на два слагаемых:

  • а = а t + а n , где а t — тангенциальное ускорение, направленное по касательной к изгибу, а n — нормальное, которое указывает на центр искривления.

Поступательное движение любого твердого тела сводится к тому, чтобы описать перемещение только одной его точки. Формулы, которыми нужно пользоваться, такие:

  • S = S 0 + V 0 t + (at 2) : 2.
  • V = V 0 + at.

В этой формуле индексами «ноль» обозначены начальные значения величин.

Теорема о величинах поступательного движения

Ее формулировка звучит так: траектория, скорость и ускорение всех точек тела одинаковы при его поступательном движении.

Для ее доказательства нужно записать формулу сложения векторов перемещения и вектора, соединяющего две произвольные точки. Траектории всех точек получаются благодаря их переносу вдоль второго вектора. А он не изменяет своего направления и величины с течением времени. Поэтому можно утверждать, что все точки тела движутся по одинаковым траекториям.

Если взять производную по времени, то получится значение скорости. Причем выражение упрощается до той степени, что скорости двух точек равны.
Поле второй производной по времени получается результат с равенством ускорений двух точек.

Поступательное и вращательное движение

Наиболее простое движение тела - такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным . Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. траектории могут быть как прямыми так и кривыми линиями.
Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения. Окружности лежат в параллельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси.

Траектория путь перемещение скорость ускорение определение

Линию, вдоль которой движется материальная точка, называют траекторией . Длину траектории называют путем. Единица пути - метр.
Путь = скорость* время. S=v*t.
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр.
Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости - м/с
Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате).

Составляющие ускорения тангенциальное и нормальное ускорения

Тангенциальное ускорение направлено по касательной к траектории

Нормальное ускорение направлено по нормали к траектории

Тангенциальное ускорение характеризует изменение скорости по величине. Если скорость по величине не изменяется, то тангенциальная составляющая равна нулю, а нормальная составляющая ускорения равна полному ускорению.

Нормальное ускорение характеризует изменение скорости по направлению. Если направление скорости не изменяется, движение происходит по прямолинейной траектории.

В общем случае полное ускорение:

Итак, нормальная составляющая вектора ускорения

Быстрота изменения со временем направления касательной к траектории. Она тем больше (), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.

4)Угловой путь

Угловой путь это элементарный угол поворота :

Радиан – это угол, который вырезает на окружности дугу, равную радиусу .

Направление углового пути определяется правилом правого винта : если головку винта вращать в направлении движения точки по окружности, то поступательное движение острия винта укажет направление .

Угловая скорость (средняя и мгновенная)

Средняя угловая скорость это физическая величина, численно равная отношению углового пути к промежутку времени :

Мгновенная угловая скорость это физическая величина, численно равная изменения пределу отношения углового пути к промежутку времени при стремлении данного промежутка к нулю, или является первой производной углового пути по времени :

, .

Законы Ньютона

Первый закон Ньютона

  • Инерциальной называется та система отсчёта, относительно которой любая, изолированная от внешних воздействий, материальная точка либо покоится, либо сохраняет состояние равномерного прямолинейного движения.
  • Первый закон Ньютона гласит:

По сути, этот закон постулирует инерцию тел, что сегодня кажется очевидным. Но это было далеко не так на заре исследования природы. Аристотель вот утверждал, что причиной всякого движения является сила, т. е. движения по инерции для него не существовало. [источник? ]

Второй закон Ньютона

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и её ускорением.

Второй закон Ньютона утверждает, что

При подходящем выборе единиц измерения этот закон можно записать в виде формулы:

где - ускорение тела;

Сила, приложенная к телу;

m - масса тела.

Или в более известном виде:

Если на тело действуют несколько сил, то второй закон Ньютона записывается:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется в общем виде: скорость изменения импульса точки равна действующей на неё силе.

где - импульс (количество движения) точки;

t - время;

Производная по времени.

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе - на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса . Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U (| r 1 − r 2 |). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

Теорема Штейнера

Теорема Штейнера - формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J0 = Jd = mR2/2 (2)

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

10) момент импульса закон сохранения момента импульса

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p =mv - импульс материальной точки (рис. 1); L - псевдовектор,

Рис.1

Моментом импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса L z не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса r i со скоростью v i . Скорость v i и импульс m i v i перпендикулярны этому радиусу, т. е. радиус является плечом вектора m i v i . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Зако́н сохране́ния моме́нта и́мпульса Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

Динамика твердого тела

Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен

Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина

называется моментом инерции твердого тела относительно Продифференцировав , получим

Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:

и работу внешней силы при повороте тела:

Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение где - плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.

Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения

которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульса Так как вектор в общем случае не параллелен вектору то для

замыкания уравнений движения надо научиться связывать эти величины друг с другом.

Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно его ось перестает двигаться, как только исчезает внешнее воздействие ( обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.

На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно Так как то и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).

Конец вектора вращается по горизонтальной окружности радиусом а с угловой скоростью

Угловая скорость прецессии не зависит от угла наклона оси а.

Зако́ны сохране́ния - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

· Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Момент силы

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI , где F - сила, I - плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м - ньютон-метр (Н м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2 .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки , R i – расстояние до оси вращения. Следовательно,

Здесь I c – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа момента сил.

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.

Механические колебания.

Колеба́ния - повторяющийся в той или иной степени во временипроцесс изменения состояний системы.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления вдругую форму.

Отличие колебания от волны.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны cволнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний иволн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Характеристики колебаний

Амплитуда (м) - максимальное отклонение колеблющейся величины от некоторого усреднённого еёзначения для системы.

Промежуток времени (сек) , через который повторяются какие-либо показатели состояния системы(система совершает одно полное колебание), называют периодом колебаний.

Число колебаний в единицу времени называется частотой колебаний (Гц, сек -1) .

Период колебаний и частота – обратные величины;

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая илициклическая частота (Гц, сек -1 , об/сек) , показывающая число колебаний за время 2π:

Фаза колебаний -- определяет смещение в любой момент времени, т.е. определяет состояниеколебательной системы.

Маятник мат физ пруж

. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид

Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

и периодом

Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы

где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как

Принимая

получим уравнение

идентичное с (1), решение которого (1) найдем и запишем как:

Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

где введена величина L=J/(ml ) - .

Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем

т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника

Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.

Гар. колебания и харак.

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. Д

Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Гармонические колебания некоторой величины s описываются уравнением вида

где ω 0 - круговая (циклическая) частота , А - максимальное значение колеблющейся величины, называемое амплитудой колебания , φ - начальная фаза колебания в момент времени t=0, (ω 0 t+φ) - фаза колебания в момент времени t. Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания , за который фаза колебания получает приращение (изменение) 2π, т. е.

Величина, обратная периоду колебаний,

т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний . Сопоставляя (2) и (3), найдем

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, во время которого за 1 с совершается один цикл процесса.

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Затух. колеб и их хар

Затухающие колебания

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

где β – коэффициент затухания

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. где β – коэффициент затухания , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

Это линейное дифференциальное уравнение второго порядка.

Частота затухающих колебаний :

В любой колебательной системе затухание приводит к уменьшению частоты и соответственно увеличению периода колебаний.

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний:

.

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в "e " раз ("е" – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

Вынужденные колеб.

Волны и их характеристика

Волна́ - возбуждение среды, распространяющееся в пространстве и времени или в фазовом пространстве с переносом энергии и без переноса массы

По своему характеру волны подразделяются на:

По признаку распространения в пространстве: стоячие, бегущие.

По характеру волны: колебательные, уединённые (солитоны).

По типу волн: поперечные, продольные, смешанного типа.

По законам, описывающим волновой процесс: линейные, нелинейные.

По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях.

По геометрии: сферические (пространственные), одномерные (плоские), спиральные.

Характеристики волн

Временна́я и пространственная периодичности

временная периодичность - скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны ;
пространственная периодичность - скорость изменения фазы (запаздывание процесса во времени) в определённый момент времени с изменением координаты - длина волны λ.

Временная и пространственная периодичности взаимосвязаны. В упрощённом виде для линейных волн эта зависимость имеет следующий вид:

где c - скорость распространения волны в данной среде.

Интенсивность волны

Для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.

Термодинамические системы

В термодинамике изучаются физические системы, состоящие из большого числа частиц и находящиеся в состоянии термодинамического равновесия или близком к нему. Такие системы называются термодинамическими системами.

Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро (примерно 6·10^23 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь.

Термодинамическое равновесие - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура,давление, объём, энтропия) в условиях изолированности от окружающей среды.

Термодинамические параметры

Различают экстенсивные параметры состояния, пропорциональные массе системы:

объём, внутренняя энергия, энтропия, энтальпия, энергия Гиббса, энергия Гельмгольца (свободная энергия),

и интенсивные параметры состояния, не зависящие от массы системы:

давление, температура, концентрация, магнитная индукция и др.

Законы идеального газа

Закон Бойля - Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими ).Тогда для данной массы газа произведение давления на объем есть величина постоянная:

Эту формулу называют уравнением изотермы . Графически зависимость p от V для различных температур изображена на рисунке.

Закон Гей - Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими ). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:

Графически зависимость V от T для различных давлений изображена на рисунке.

>>Физика: Движение тел. Поступательное движение

Описание движения тела считается полным лишь тогда, когда известно, как движется каждая его точка.
Мы много внимания уделили описанию движения точки. Именно для точки вводятся понятия координат, скорости, ускорения, траектории . В общем случае задача описания движения тел является сложной. Особенно она сложна, если тела заметно деформируются в процессе движения. Проще описать движение тела, взаимное расположение частей которого не изменяется. Такое тело называется абсолютно твердым . На самом деле абсолютно твердых тел нет. Но в тех случаях, когда реальные тела при движении мало деформируются, их можно рассматривать как абсолютно твердые. (Еще одна абстрактная модель, вводимая при рассмотрении движения.) Однако и движение абсолютно твердого тела в общем случае оказывается весьма сложным. Любое сложное движение абсолютно твердого тела можно представить как сумму двух независимых движений: поступательного и вращательного.
Поступательное движение . Самое простое движение твердых тел - поступательное .
Поступательным называется такое движение твердого тела, при котором любой отрезок, соединяющий любые две точки тела, остается параллельным самому себе.
При поступательном движении все точки тела совершают одинаковые перемещения, описывают одинаковые траектории, проходят одинаковые пути, имеют в каждый момент времени равные скорости и ускорения. Покажем это.
Пусть тело движется поступательно (рис.2.1 ). Соединим две его произвольные точки B и A отрезком. Расстояние не изменяется, так как тело абсолютно твердое. При поступательном движении остаются постоянными модуль и направление вектора . Вследствие этого траектории точек B и A одинаковы, так как они могут быть полностью совмещены параллельным переносом на вектор .

Согласно рисунку 2.1 перемещения точек A и B одинаковы и совершаются за одно и то же время. Следовательно, точки A и B имеют одинаковые скорости и ускорения.
Совершенно очевидно, что для описания поступательного движения твердого тела достаточно описать движение какой-либо одной его точки. Лишь при поступательном движении можно говорить о скорости и ускорении тела. При любом другом движении тела его точки имеют различные скорости и ускорения , и термины «скорость тела» и «ускорение тела» для не поступательного движения теряют смысл.
Примерно поступательно движутся ящик письменного стола, поршни двигателя автомобиля относительно цилиндров, вагоны на прямолинейном участке железной дороги, резец токарного станка относительно станины. Движение педали велосипеда или кабины колеса обозрения в парках (рис.2.2, 2.3 ) - также примеры поступательного движения.

Для описания поступательного движения твердого тела достаточно написать уравнение движения одной из его точек.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные