Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

На сегодняшний день современное производство металлических изделий требует повышенного качества изготавливаемых материалов без существенного повышения цены продукта. Мы предлагаем Вам купить промышленные индукционные тигельные плавильные печи для плавки металла по ценам от производителя, при помощи которых можно достичь таких требований.

В отличии от пламенных и дуговых индукционные плавильные установки сохраняют точность и однородность химического состава и имеют меньшую стоимость.

Компания Проминдуктор занимается производством и продажей промышленных индукционных тигельных плавильных печей, которые подходят для плавки любых видов металла: чугуна, стали, алюминия, меди, золота, платины и их сплавов.

При покупке у нас Вы получаете ряд преимуществ:

  • Высокое качество - используем последние мировые разработки совместно с собственными;
  • Цены от производителя - стоимость значительно ниже, чем у других компаний в России;
  • Экономичность оборудования – экономия электричества до 30%;
  • Техническая поддержка 24/7 – если Вы приобрели оборудование у нас, то сможете получить помощь наших специалистов в любое время дня и ночи.
  • Наше производство и лучшие инженеры находятся в Китае, оборудование всегда есть в наличии на складе, бесплатная доставка по России, возможна доставка в страны СНГ. Позвоните нам и мы дадим профессиональные консультации в подборе.

    Принцип работы индукционных печей для плавки металла

    По принципу работы все индукционные плавильные установки напоминают трансформатор, в котором есть первичная и вторичная обмотка. Индуктор из медной трубы выполняет роль первичной обмотки, который имеет свое собственное водяное охлаждение. Роль вторичной обмотки выполняет металл (сталь, чугун, медь, алюминий) во время нагрева, заложенный в тигель. Под действием токов высокой частоты катушка образует электромагнитное поле в тигле, под воздействием которого происходит нагрев металла до максимальных температур за короткий период времени.

    Промышленные индукционные тигельные печи нашего производства имеют возможность задать необходимую мощность нагрева для плавки металла в зависимости от его типа. Эта функция является неоспоримым преимуществом данного оборудования.

    Устройство индукционной плавильной печи

    Условно индукционные тигельные печи можно разделить на 2 составляющие:

  • Плавильная установка
  • Вспомогательное оборудование

  • Плавильная установка представляет собой опорный каркас из двух сваренных стоек с гидравлическими плунжерами и узловую составляющую индуктора. Установочный механизм выполнен из прокатных листов нержавейки. Катушка индуктора изготовлена из медной трубы, через которую также происходит охлаждение посредством холодной воды. Электричество и вода подключены к катушке при помощи гибких кабелей, которые соединены последовательно. При помощи гидравлических плунжеров обеспечивается наклон установки до 95°.

    Все оборудование индукционной печи для плавки металла питается от частотного преобразователя тиристорного типа, который преобразовывает трехфазный ток в однофазный. Фронтовая панель имеет датчики защиты и оборудование, контролирующее работу преобразователя.

    Регулировка частоты происходит в автоматическом режиме по заданной программе. На воронке слива установлены системы оповещения и контроля охлаждения процессов, а также уровня конденсации рабочей зоны.

    Промышленные индукционные тигельные плавильные печи для плавки металла от компании ПРОМИНДУКТОР изготовлены по всем мировым стандартам и с использованием самых последних технологий.

    Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.

    В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла .

    Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла .

    В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца-Джоуля .

    Описанные превращения энергии электромагнитного поля дают возможность:
    1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
    2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).

    На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.

    Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.

    По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.

    По частоте изменения тока, питающего установку индукционного нагрева, различают:
    1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
    2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
    3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.

    Установки индукционного нагрева с сердечником

    В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).

    Рис.1. Схема устройства индукционной канальной печи: 1 - индикатор; 2 - металл; 3 - канал; 4 - магнитопровод; Ф - основной магнитный поток; Ф 1р и Ф 2р - магнитные потоки рассеяния; U 1 и I 1 - напряжение и ток в цепи индуктора; I 2 - ток проводимости в металле

    В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).

    В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.

    Установки индукционного нагрева без сердечника

    В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно .

    Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.

    В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).


    Рис. 2. Схема устройства индукционной тигельной печи: 1 - индуктор; 2 - металл; 3 - тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)

    Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).

    Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.

    Использованная литература:
    1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.

    В статье рассмотрены схемы промышленных индукционных плавильных печей (канальных и тигельных) и индукционных закалочных установок с питанием от машинных и статических преобразователей частоты.

    Схема индукционной канальной печи

    Почти все конструкции промышленных индукционных канальных печей выполняются с отъемными индукционными единицами. Индукционная единица представляет собой электропечной трансформатор с футерованным каналом для размещения расплавленного металла. Индукционная единица состоит из следующих элементов, кожуха, магнитопровода, футеровки, индуктора.

    Индукционные единицы выполняются как однофазными, так и двухфазными (сдвоенными) с одним или двумя каналами на один индуктор. Индукционная единица подключается ко вторичной стороне (стороне НН) электропечного трансформатора с помощью контакторов, имеющих дугогасящие устройства. Иногда включаются два контактора с параллельно работающими силовыми контактами в главной цепи.

    На рис. 1 приведена схема питания однофазной индукционной единицы канальной печи. Реле максимального тока РМ1 и РМ2 служат для контроля и отключения печи при перегрузках и коротких замыканиях.

    Трехфазные трансформаторы используются для питания трехфазных или двухфазных печей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

    Для питания печи в период рафинирования металла и для поддержания режима холостого хода служат автотрансформаторы для более точного регулирования мощности в период доводки металла до нужного химического состава (при спокойном, без бурления, режиме расплавления), а также для начальных пусков печи при первых плавках, которые проводятся при малом объеме металла в ванне для обеспечения постепенной сушки и спекания футеровки. Мощность автотрансформатора выбирают в пределах 25-30% мощности основного трансформатора.

    Для контроля температуры воды и воздуха, охлаждающих индуктор и кожух индукционной единицы, устанавливают электроконтактные термометры, выдающие сигнал при превышении температуры свыше допустимой. Питание печи автоматически отключается при повороте печи для слива металла. Для контроля положения печи служат конечные выключатели, сблокированные с приводом электропечи. У печей и миксеров непрерывного действия при сливе металла и загрузке новых порций шихты отключение индукционных единиц не производится.


    Рис. 1. Принципиальная схема питания индукционной единицы канальной печи: ВМ - выключатель мощности, КЛ - контактор, Тр - трансформатор, С - конденсаторная батарея, И - индуктор, ТН1, ТН2 - трансформаторы напряжения, 777, ТТ2 - трансформаторы тока, Р - разъединитель, ПР - предохранители, РМ1, РМ2 - реле максимального тока.

    Для обеспечения надежного питания при эксплуатации и в аварийных случаях приводные двигатели механизмов наклона индукционной печи, вентилятора, привод загрузочно-разгрузочных устройств и системы управления питаются от отдельного трансформатора собственных нужд.

    Схема индукционной тигельной печи

    Промышленные индукционные тигельные печи емкостью более 2 т и мощностью свыше 1000 кВт питаются от трехфазных понижающих трансформаторов с регулированием вторичного напряжения под нагрузкой, подключаемых к высоковольтной сети промышленной частоты.

    Печи выполняют однофазными, и для обеспечений равномерной нагрузки фаз сети в цепь вторичного напряжения подключают симметрирующее устройство, состоящее из реактора L с регулированием индуктивности методом изменения воздушного зазора в магнитной цепи и конденсаторной батареи Сс, подключаемых с индуктором по схеме треугольника (см. АРИС на рис. 2). Силовые трансформаторы мощностью 1000, 2500 и 6300 кВ-А имеют 9 - 23 ступени вторичного напряжения с автоматическим регулированием мощности на желаемом уровне.

    Печи меньших емкости и мощности питаются от однофазных трансформаторов мощностью 400 - 2500 кВ-А, при потребляемой мощности свыше 1000 кВт также устанавливают симметрирующие устройства, но на стороне ВН силового трансформатора. При меньшей мощности печи и питании от высоковольтной сети 6 или 10 кВ можно отказаться от симметрирующего устройства, если колебания напряжения при включении и выключении печи будут находиться в допустимых пределах.

    На рис. 2 приведена схема питания индукционной печи промышленной частоты. Печи снабжаются регуляторами электрического режима АРИР, которые в заданных пределах обеспечивают поддержание напряжения, мощности Рп и cosфи путем изменения числа ступеней напряжения силового трансформатора и подключения дополнительных секций конденсаторной батареи. Регуляторы и измерительная аппаратура размещены в шкафах управления.


    Рис. 2. Схема питания индукционной тигельной печи от силового трансформатора с симметрирующим устройством и регуляторами режима печи: ПСН - переключатель ступеней напряжения, С - симметрирующая емкость, L - реактор симметрирующего устройства, С-Ст - компенсирующая конденсаторная батарея, И - индуктор печи, АРИС - регулятор симметрирующего устройства, АРИР - регулятор режима, 1K-NK - контакторы управления емкостью батареи, ТТ1, ТТ2 - трансформаторы тока.

    На рис. 3 приведена принципиальная схема питания индукционных тигельных печей от машинного преобразователя средней частоты. Печи оснащены автоматическими регуляторами электрического режима, системой сигнализации «проедания» тигля (для высокотемпературных печей), а также сигнализацией о нарушении охлаждения в водоохлаждаемых элементах установки.


    Рис. 3. Схема питания индукционной тигельной печи от машинного преобразователя средней частоты со структурной схемой автоматического регулирования режима плавки: М - приводной двигатель, Г -генератор средней частоты, 1K-NK - магнитные пускатели, ТИ - трансформатор напряжения, ТТ - трансформатор тока, ИП - индукционная печь, С - конденсаторы, ДФ - датчик фазы, ПУ - переключающее устройство, УФР - усилитель-фазорегулятор, 1КЛ, 2КЛ - линейные контакторы, БС - блок сравнения, БЗ - блок защиты, ОВ - обмотка возбуждения, РН - регулятор напряжения.

    Схема индукционной закалочной установки

    На рис. 4 приведена принципиальная электрическая схема питания индукционного закалочного станка от машинного преобразователя частоты. Помимо источника питания М-Г схема включает в себя силовой контактор К, закалочный трансформатор ТрЗ, на вторичную обмотку которого включен индуктор И, компенсирующую конденсаторную батарею Ск, трансформаторы напряжения и тока ТН и 1TT, 2ТТ, измерительные приборы (вольтметр V, ваттметр W, фазометр) и амперметры тока генератора и тока возбуждения, а также реле максимального тока 1РМ, 2РМ для защиты источника питания от коротких замыканий и перегрузок.

    Рис. 4. Принципиальная электрическая схема индукционной закалочной установки: М -приводной двигатель, Г - генератор, ТН, ТТ - трансформаторы напряжения и тока, К - контактор, 1PM, 2РМ, ЗРМ - реле тока, Рк - разрядник, А, V, W - измерительные приборы, ТрЗ - закалочный трансформатор, OВГ -обмотка возбуждения генератора, РР - разрядный резистор, РВ - контакты реле возбуждения, PC - регулируемое сопротивление.

    Для питания старых индукционных установок для термообработки деталей используют электромашинные преобразователи частоты - приводной двигатель синхронного или асинхронного типа и генератор средней частоты индукторного типа, в новых индукционных установках - статические преобразователи частоты.

    Схема промышленного тиристорного преобразователя частоты для питания индукционной закалочной установки показана на рис. 5. Схема тиристорного преобразователя частоты состоит из выпрямителя, блока дросселей, преобразователя (инвертора), цепей контроля и вспомогательных узлов (реакторов, теплообменников и пр.). По способу возбуждения инверторы выполняются с независимым возбуждением (от задающего генератора) и с самовозбуждением.

    Тиристорные преобразователи могут устойчиво работать как с изменением частоты в широком диапазоне (при самонастраивающемся колебательном контуре в соответствии с изменяющимися параметрами нагрузки), так и при неизменной частоте с широким диапазоном изменения параметров нагрузки в связи с изменением активного сопротивления нагреваемого металла и его магнитных свойств (для ферромагнитных деталей).


    Рис. 5. Принципиальная схема силовых цепей тиристорного преобразователя типа ТПЧ-800-1: L - сглаживающий реактор, БП - блок пуска, ВА - выключатель автоматический.

    Преимуществами тиристорных преобразователей являются отсутствие вращающихся масс, малые нагрузки на фундамент и малое влияние коэффициента использования мощности на снижение КПД, КПД составляет 92 - 94% при полной нагрузке, а при 0,25 снижается только на 1 - 2%. Кроме того, поскольку частота может быть легко изменена в определенном диапазоне, нет необходимости регулирования емкости для компенсации реактивной мощности колебательного контура.

    ПЛAВИЛЬНAЯ ПEЧЬ - это устройство, предназначенное для плавки шихты черного или цветного металла. Преимущества в том, что плавильная масса отлично перемешивается, если используется индукционная плавильная печь для плавки металла, за счет действия вихревых электрических токов. Нужна плaвильнaя пeчь с хорошими характеристиками? ZAVODRR - транзисторные, тиристорные печи для меди, чугуна, алюминия, стали на 5 - 5000 кг.

    Как устроены плaвильные пeчи?

    Как устроены плавильные печи? ПЛАВИЛЬНЫЕ ПЕЧИ - это хороший способ переплавлять как черные, так и цветные металлы, такие как алюминий, сталь, чугун, нержавейка, медь. Индукционные плавильные печи имеют не сложное устройство, работают под силой электромагнитного поля, способны равномерно перемешивать металл во время плавки. На индукционных печах имеется крышка, и устройство для слива металла в литейный ковш . Компания РОСИНДУКТОР предлагает плавильные печи транзисторного или тиристорного исполнения на редукторе и гидравлики.

    Преимущество печей на редукторе это возможность ручного (аварийного) слива металла, гидравлики - это плавность наклона плавильного узла. Плавильные печи поставляются с одним или двумя плавильными узлами, внутри каждого плавильного узла располагается индуктор. Индуктор выполнен в виде медной катушки состоящей из множества витков, трубка может быть как круглого, так и прямоугольного сечения.

    Охлаждение плавильного узла производится при помощи чиллера или градирни . Во время плавки металла необходимо охлаждать два контура: реактор (располагается внутри тиристорного преобразователя) и сам индуктор плавильного узла. Плавильный узел имеет два варианта тигиля: графитовый и футерованный (выполняется вручную из футерованной смеси). Графитовые тигиля используются для переплавки цветных металлов, для черных металлов используют футеровку.


    • Нижний-Новгород

    • Челябинск

    • Красноярск

    • Минск Белоруссия

    • Челябинск

    • Пермь

    • Курган

    • Челябинск

    • Москва

    • Оренбург

    • Казань

    • Волгоград

    • Челябинск

    • Челябинск

    • Луганск

    • Ульяновск

    • Челябинск

    • Архангельск

    Плавильные печи - транзисторные

    Транзисторная индукционная плавильная печь предназначена для шихты черных и цветных металлов.. Она произведена базе среднечастотного индукционного нагревателя, который собран при помощи MOSFET транзисторов и IGBT модулей, что позволяет экономить на электроэнергии до 35%, имея высокий КПД 95%.

    Индукционные плавильные печи на базе транзисторов подходят небольшим промышленным литейным предприятиям, которым необходимо переплавлять небольшое количество металла. Из преимущества плавильных печей можно отметить их мобильность и простоту обслуживания, так как они используют графитовый тигель, поэтому экономиться время на изготовление футеровки и ее сушки.

    Компания Росиндуктор предлагает купить индукционные плавильные печи LEGNUM (Тайвань), эти печи являются самыми популярными среди российских покупателей. Тиристорная индукционная плавильная печь Legnum поставляются в двух модификациях на гидравлике и редукторе, основными покупателями являются средние и крупные плавильные производства с производительность от 2000 тонн/год.

    В комплекте поставки индукционной плавильной печи идут два плавильных узла, они устанавливаются на заранее подготовленный фундамент. Главными преимуществами является экономичность в среднем на 20-30% экономичнее любых других аналогов представленных на Российском рынке, надежность, современный дизайн и доступная цена. Росиндуктор поставляет индукционные плавильные печи не только во все регионы РОССИИ, а так же страны бывшего СНГ. Обратившись в нашу компанию, будьте уверены индукционная плавильная печь, которую вы покупаете, имеет гарантированно лучшую цену, качество, надежность и условия поставки.

    Преимущества плавки металла в плавильных печах является экономичность. Это происходит из-за выделения большого количества тепла при нагреве металла, поэтому печи потребляют относительно не большую мощность. Если делать сравнение между транзисторными и тиристорными печами, то первые экономичнее на 25%, но их стоимость при одинаковой мощности заметно выше. Самые распространённые печи с температурой плавки 1650 °C, при этой температуре можно расплавить любую не тугоплавкую шихту.

    Вовремя плавки металла управление печью происходит механическим способом или дистанционно. В обоих случаях управлять процессом должен обученный персонал, имеющий соответствующие разрешения и допуски. Компания Росиндуктор выполняет работы по настройке преобразователей, устранению неисправностей и поддержке плавильного оборудования в рабочем состоянии.

    При выборе плавильной печи необходимо задуматься о выборе тигиля. От этого зависит какой металл будет плавиться и сколько плавок он сможет выдержать. В среднем тигель выдерживает от 20 до 60 плавок. Для долгой службы тигиля надо использовать качественные и надежные материалы. Время плавки металла занимает не более 50 минут, на разогретой плавильной печи, поэтому печь небольшого объема и мощности может иметь высокую производительность.

    В комплекте поставки плавильные печи включают в себя основные элементы: тиристорный или транзисторный преобразователь частоты, плавильные узлы, конденсаторные батареи, шаблоны, водоохлаждаемые кабеля, пульты управления, системы охлаждения.

    Индукционная плавильная печь 5 - 5000 кг

    Индукционная плавильная тигельная печь на 5 - 5000 кг плавки, в легком корпусе из алюминиевого сплава, с ТПЧ и редуктором наклона. Индукционная тигельная печь с тиристорным преобразователем предназначена для плавки черных и цветных металлов на литейных заводах. Печь используется для нагрева расплава меди, стали и чугуна. Круглосуточный режим работы печи возможен при необходимости.

    Плaвильныe печи для алюминия

    Плавильные печи для алюминия имеют свои особенности, ведь температура плавления у алюминия составляет 660 °C, (390 кДж/кг). При выборе печи под алюминий вы должны знать, что тиристорный преобразователь не должен быть мощный, а сам плавильный узел отличается своими размерами от узла для стали или меди в 2-3 раза. Соответственно не рекомендуется в нем производить плавки других металлов.

    Плавить алюминиевые сплавы можно в печах с нефтяным, газовым и электрическим обогревом, в пламенных отражательных печах, но самый качественный металл и высокая скорость получается при плавке в индукционных плавильных печах, за счет однородного состава шихты, которая отлично перемешивается в индукционном поле.

    Плaвильныe печи для стали

    Плавильные печи нагреваются до своей максимальной температуре при плавки стали 1500 - 1600 °С и сопровождается сложными физико-химическими процессом. При переплавке стали, необходимо снизить содержания кислорода, серы и фосфора, образующих оксидные и сульфидные элементы, который снижают качество стали.

    Особенность плавки стали в плавильных печах является использование футеровочных смесей, в отличие от плавки меди, где применяется графитовый тигель. Плавильные печи хорошо перемешивают металл, за счет индукционного поля, которое выравнивает химический состав стали.

    Указанные выше преимущества, отлично подходят при выплавке легированных сталей, с минимальными потерями легирующих элементов: вольфрама - около 2%, марганца, хрома и ванадия - 5 - 10%, кремния - 10 - 15%, учитывая дефицитность и высокую стоимость легирующих элементов.

    Плавка стали имеет следующие особенности и преимущества:

    • Самые важные отливки плавятся, используя метод окисления, ведь во время кипения металла, удаляются все неметаллические включения, и происходит понижение содержания фосфора. Состав шихты берется лома углеродистых сталей или чугуна, для получения среднего содержания углерода 0,5 %;
    • Если вы собираетесь плавить сталь с высоким содержанием марганца, алюминия, хрома надо выбирать кислую футеровку, ведь стойкость тигля будет в два раза выше;
    • Перед началом плавки тигель забивается металлом, но верх не следует забивать плотно, это может привести к образованию сводов и соответственно угару металла, так как шихта будет осаживаться во время плавки нижних кусков;
    • Время плавки стали составляет от 50-70 минут, в зависимости от разогрева плавильного узла;
    • Плавильные печи для стали, имеют высокую производительность при производстве отливок небольшой массы и размера.

    Медь, медные сплавы, бронза, латунь можно расплавить во всех плавильных печах, где поддерживается температурный режим 1000 - 1300 °С. Однако предпочтительнее использовать индукционные плавильные печи, так как одна плавка в них не будет превышать 40 минут. Медь, которую сегодня используют в России, не отличается особой чистотой. Обычно она содержит следующие примеси: железо, никель, сурьма, мышьяк. Чистым металлом считается медь с содержанием примесей 1%.

    Основное важное качество металла - это высокие показатели электропроводности и теплопроводности. Этим обуславливается невысокая температура для плавки. Температура плавки меди - 1084°С. Медь является достаточно гибким металлом, который широко используют в различных технических отраслях промышленности, вот некоторые ее особенности:

    • Плавить медь можно в открытой среде, в вакууме и в среде защитных газов;
    • В вакууме плавят медь для получения бескислородной меди, с возможностью понизить O (Oxygenium) кислород практический до нуля 0,001 %;
    • Основная шихта при получении бескислородной меди это катодные листы 99,95 %, перед тем как загрузить листы в печь необходимо их разрезать, промыть и просушить от электролита;
    • Футеровка плавильной печи выше уровня металла делают из магнезита;
    • Чтобы избежать окисления, плавка ведется с применением древесного угля, флюсов, стекла и других компонентов.

    Индукционная печь для плавки металла

    Индукционная печь для плавки металла нагревает шихту металла токами высокой частоты (ТВЧ) в индуцируемом электромагнитном поле под воздействием вихревых электрических токов. Плавильные печи тратят большое количество электроэнергии, поэтому мы предлагаем печи не только с тиристорным преобразователем , но и экономичным транзисторным . Печь использует футеровку или графитовый тигель, в обоих случаях их хватает только на 20-40 плавок. Высокая температура плавления, позволяет производить одну плавку металла за 50 минут.

    ZAVODRR - печи для плавки металлов от российских, азиатских и европейских производителей с емкостью тигля от 1 до 10 000 кг. Поставка, монтаж, запуск и не дорогое обслуживание печей.

    Давайте рассмотрим особенности печей для плавки черных, цветных и драгоценных металлов:

    • Печь для плавки алюминия (плавка алюминия в печах производится при температуре 660 °C, температура кипения 2400 °C, плотность 2698 кг/см³);
    • Печь для плавки чугуна (плавка чугуна 1450 - 1520 °C, плотность 7900 кг/м³);
    • Печь для плавки меди (плавка меди 1083°C, температура кипения 2580°C, плотность 8920 кг/см³);
    • Печь для плавки золота (плавка золота 1063°C, температура кипения 2660°C, плотность 19320 кг/см³);
    • Печи плавки серебра (плавка серебра 960°C, температура кипения 2180°C, плотность 10500 кг/см³);
    • Печь для плавки стали (плавка стали в печах 1450 - 1520 °C, плотность 7900 кг/м³);
    • Печь плавки железа (плавка железа 1539°C, температура кипения 2900°C, плотность 7850 кг/м3);
    • Печи для плавки титановых сплавов (плавка титана 1680°C, температура кипения 3300°C, плотность 4505 кг/м³);
    • Печь для плавки свинца (плавка свинца в печах 327°C, температура кипения 1750°C, плотность 1134 кг/см³);
    • Печь плавки латуни (плавка латуни в печах 880—950 °C. плотность 8500 кг/м³);
    • Печи плавки бронзы (плавка бронзы в печах, 930—1140 °C 8700 кг/м³).
    В последнее время за рубежом вновь возрос интерес к индукционным печам как к возможным агрегатам получения слитков, особенно с использованием в качестве шихты металлизованных окатышей.
    Применение печей этого типа в сталеплавильных цехах ограничивается во всем мире целями получения сплавов или лигатур, в связи с чем емкость их, как правило, не превышает 5 т.
    В литейных цехах, напротив, работают крупные печи. Самая крупная установка в мире включает в себя 4 печи емкостью по 60 т и мощностью по 20 кВт с общей производительностью 160 т/ч. Используемый лом подогревается до 600 °C.
    По целому ряду важнейших параметров печи этого типа предпочтительнее дуговых электропечей. В связи с этим возникают вопросы относительно возможных граничных условий применения их в сталеплавильном производстве. Имеющаяся практика свидетельствует о том, что допустимое напряжение может составлять 3000 В и сила тока 70 000 А. Таким образом, кажущаяся мощность может быть в перспективе повышена до 210 MB*А. Индуцированная действительная мощность, зависящая от толщины стен тигля, относится к кажущейся мощности как 1:5-1:7.
    Движение металла в индукционной печи, являющееся в целом весьма положительным с металлургических позиций фактором, при чрезмерной удельной мощности может быть, однако, сопряжено с выбросами металла. По этому показателю удельная мощность крупных печей ограничивается пока что величиной 330 кВт/т металла.
    На мощность индукционных печей может существенно повлиять толщина футеровки тигля. Футеровка должна быть достаточно надежной и долговечной. Однако по мере увеличения ее толщины снижается полезная мощность печи, к примеру, для печи емкостью 100 т при кажущейся мощности 210 MB*A она снижается до 38 МВт при толщине стен 15 см и до 28 МВт при толщине стен 40 см. Выбор материала стен также на сегодня является большой проблемой. Кислая футеровка выдерживает большое число плавок, что позволяет иметь расход огнеупоров 0,7 кг/т стали при температуре выпуска стали 1550 °C. Однако такая футеровка годится далеко не для всех случаев и, как правило, не приемлема для выплавки стали из обычного лома из-за невозможности удалить из металла серу и фосфор в этом случае. К тому же углерод и марганец металла будут вступать во взаимодействие с кремнеземом футеровки, что может привести к последствиям, влияние которых необходимо ограничивать.
    Удаление таких примесей, как кремний, сера, марганец, из металла можно в известной мере обеспечить вдуванием соответствующих порошкообразных материалов без чрезмерного износа футеровки. Можно также обеспечить и кипение металла с известным понижением мощности в этот период во избежание выбросов.
    С позиций усвоения легирующих, расплавления легковесной шихты, удаления газов из металла и снижения его газонасыщенности индукционные печи обладают несомненными преимуществами перед дуговыми. Наряду с этим индукционные печи по принципу работы являются по существу агрегатами непрерывного действия и поэтому могут быть более пригодными для передела металлизованной шихты. Важно и то, что работа индукционных печей не сопровождается такими значительными колебаниями электрических параметров, как работа дуговых печей.
    Капитальные и эксплуатационные затраты на производство стали в индукционных и дуговых печах близки между собой. Ho при организации непрерывного процесса плавки можно ожидать снижения затрат в случае использования индукционных печей вследствие упрощения конструкции зданий и газоочистки, устранения затрат на борьбу с шумом, меньших затрат на обслуживающий персонал и огнеупоры, более гибкого регулирования температуры и химического состава стали.
    Использование индукционных печей для переплава металлизованных окатышей имеет ряд дополнительных преимуществ.
    Вследствие интенсивного движения металла в индукционной печи металлизованные окатыши могут быстро увлекаться в глубь ванны, что предохранит их от окисления в процессе плавления. К тому же само плавление происходит без перегрева окатышей, что обеспечивает минимальный угар железа и выделение пыли из печи.
    При заданной подводимой мощности к печи температура металла легко регулируется скоростью подачи окатышей.
    Могут быть сокращены капитальные затраты, поскольку установка может иметь два тигля, один из которых находится в ремонте, другой в работе. В этом случае достигается высокая степень использования установленной мощности.
    Малое время- соприкосновения окатышей с атмосферой, а также отсутствие зон высоких температур, как это имеет место под электрическими дугами в дуговой печи, позволят получать очень низкие содержания азота в металле - на уровне их содержаний в металле, выплавленном в кислородных конверторах.
    Что касается металлургических процессов в индукционной печи при переплаве металлизованных окатышей, то они по существу сводятся к двум процессам: удалению фосфора и удалению углерода с одновременным довосстановлением содержащихся в окатышах окислов железа. Содержание серы в окатышах при газовом восстановлении может быть получено на низком уровне.
    На ряде индукционных установок в ФРГ емкостью от нескольких десятков килограммов до двух тонн были проведены достаточно разносторонние эксперименты по переплаву металлизованных окатышей, которые позволили выявить многие особенности этого процесса, его преимущества и недостатки, а также в известной мере определить перспективы на будущее.
    Скорость нагрева губчатого железа в индукционной тигельной печи джоулевым теплом зависит как от параметров самого губчатого железа, так и печи. При проведении сравнительных экспериментов в двух печах мощностью 54 и 30 кВт с частотой тока соответственно 250 и 2000 Гц при массе плавки от 4 до 22 кг, с использованием губчатого железа пяти сортов с колебаниями размеров кусков от 2-16 до 6-40 мм, насыпной плотности от 1,01 до 2,52 г/см3 и степени металлизации от 83,9 до 99,2 были установлены следующие основные закономерности. Величина индуктируемой в садке мощности и скорость нагрева губчатого железа возрастали с увеличением частоты тока и мощности печи, а также величины кусков губчатого железа, степени его металлизации и насыпной плотности. Однако при наличии выявленной технической возможности расплавления губчатого железа в индукционной печи в отсутствие какого-то количества предварительно расплавленного металла, так называемого "болота", была установлена нецелесообразность такого процесса. Губчатое железо начинало плавиться на дне тигля, а находившийся выше слой губчатого железа вниз не сходил и спекался настолько прочно, что дальнейшая загрузка губчатого железа оказывалась невозможной. Попытки расплавить этот слой могут привести к перегреву уже расплавленного металла и прогару тигля. Чтобы получить необходимую для плавления высокую индуктируемую мощность, необходимы высокочастотные установки, которые значительно более дороги и к тому же металл в них очень слабо перемешивается. Наконец, необходимый нагрев губчатого железа достигался при очень высоком расходе электроэнергии, т.е. при значительно более низком к.п.д. печи, чем при плавлении скрапа.
    Дальнейшие опыты с высокочастотной печью (2000 Гц) емкостью 120 кг подтвердили неперспективность использования печей такого типа для плавления губчатого железа. Даже при загрузке губчатого железа на чистую поверхность предварительно расплавленного металла окатыши быстро расплавлялись только в начальный период их загрузки, не увлекаясь при этом в глубь ванны. В дальнейшем начинал образовываться шлак, поверхность которого вследствие излучения и охлаждающего эффекта губчатого железа покрывалась коркой, что препятствовало поступлению свежих порций губчатого железа в металлическую ванну.
    Гораздо более обнадеживающими были эксперименты, проведенные в низкочастотной печи (150 Гц) емкостью 1,5 т, в ходе которых переплавлялось губчатое железо со степенью металлизации от 87,6 до 97,0 с крупностью кусков 6-40 мм. Каждую плавку начинали при наличии в печи около 1 т расплавленного металла и дополнительно загружали около 300 кг губчатого железа, после расплавления выпускали около 250 кг металла и скачивали шлак. При этом расход электроэнергии в случае выплавки стали с 0,5 % С составил в среднем 2617 МДж/т и в случае выплавки стали с 1,8 % 2318 МДж/т. На каждый 1 % снижения степени металлизации расход электроэнергии увеличивался на 36 МДж на 1 т выплавленного металла. Длительность плавления каждой порции губчатого железа составляла 16 мин, при этом температура ванны вследствие недостаточности подводимой мощности снижалась на 90 °C. Таким образом, производительность плавления определялась не скоростью плавления, а подводимой мощностью. Поскольку пустая порода губчатого железа имела кислый характер (2,5 % SiO2; 0,1 % CaO и 0,2 % Al2O3), то износ основной футеровки тигля был довольно значительным, увеличивался сверху вниз и достигал 15 % от начальной толщины, составляющей 13 см. Доля восстановленных окислов железа за время плавки составляла около 65 %. В тех случаях, когда шлак не раскислялся кремнием и марганцем, он был пористым и быстро охлаждался с поверхности, что вынуждало прекращать загрузку губчатого железа для скачивания шпака, если степень металлизации губчатого железа не превышала 90 %.
    На специально построенной на заводе в Оберхаузене индукционной печи промышленной частоты емкостью 2 т и установленной мощностью 750 кВт было проведено изучение взаимодействия шлака и огнеупорной футеровки тигля, а также реакций на границах раздела фаз губчатое железо - расплав и расплав - шлак. Толщина кладки стен составляла в начале кампании 100 мм и допускалось ее снижение до 40 мм. Использовалось губчатое железо, полученное на установке Пурофер с различным содержанием углерода и пустой породы, а также степени восстановления (табл. 27).

    При переплаве железа марки А с низким содержанием фосфора и кислой пустой породой можно было работать на кислых шлаках и кварцевой футеровке тигля. При этом насыщенный шлак содержал около 82 % SiO2; 10 % FeO и 8 % Al2O3. Износа нижней части тигля не наблюдали, но верхняя его часть изнашивалась довольно быстро, ко не за счет химического взаимодействия со шлаком, а в результате попадания на стенки окисленных капель металла и образования при этом легкоплавких силикатов. Устранено это явление может быть путем изготовления этой части тигля из глинозема.
    При переплаве губчатого железа марки В основность шлака составляла около 1,5 и количество его не превышало 110 кг/т. Такой шлак разъедал футеровку из плавленого или обожженного магнезита, тигель из материала, содержащего 80 % MgO и 20 % Cr2O3, стоял в течение трех недель при трехсменной работе.
    При изучении металлургических процессов при переплаве губчатого железа было отмечено два важных обстоятельства.
    1. При выбранных электрических параметрах печи металл в ней интенсивно перемешивался и губчатое железо быстро увлекалось в глубь ванны. Благодаря этому, а также наличию кислорода и углерода в самом губчатом железе реакция обезуглероживания получала большое развитие и протекала с высокими скоростями, несмотря на неблагоприятное соотношение поверхности ванны к ее объему в индукционной печи по сравнению с дуговой печью. В экспериментах скорость обезуглероживания достигала 1 кг/ (м2*мин) и предположительно может быть повышена. Благодаря этому скорость расплавления губчатого железа в индукционной печи емкостью 100 т может достигать 50 т/ч.
    2. Температура шлака в индукционной печи не может превышать температуру металла и поскольку к тому же фосфор в губчатом железе находится в пустой породе, то существенно облегчаются возможности получения низкого содержания фосфора в металле. Для стали, выплавленной из губчатого железа марки В, типичным был следующий химический состав, %: С 0,1; Mn 0,04; P 0,011; S 0,005 и N2 0,0015. Эти эксперименты показали, что в случае периодической загрузки губчатого железа при правильном Выборе геометрических и электрических параметров печи особых технических трудностей в процессе его переплава не возникает, однако стоимость плавления, отнесенная к выходу годного металла, выше, чем при плавлении скрапа, увеличивается расход электроэнергии и раскислителей, выше износ футеровки, большие потери времени на скачивание шлака. Поэтому переплав губчатого железа в индукционной Печи может быть экономически целесообразен, если стоимость его будет меньше стоимости скрапа или возможно будет найти источники компенсации этих потерь (большая однородность и чистота губчатого железа, удобство его загрузки и транспортировки и т.д.).
    Особенно большие преимущества могут быть получены при обеспечении непрерывной загрузки и выпуска металла. В этом случае в принципе возможны резкое сокращение ручных операций, достижение высокой степени автоматизации процесса, работа при полном тигле на максимальной мощности при соответствии подводимой и потребляемой электрической мощности и обеспечении стационарного процесса плавления, температуры и химического состава металла.
    По данным, при периодическом процессе, но с оставлением в тигле 30-60 % металла потребляемая электрическая мощность составляет 75-100 % от номинальной (рис. 101).
    Проведенная на серии экспериментов в печи емкостью 130 кг проверка этих предположений в значительной степени их подтвердила, но выявила и ряд новых особенностей процесса, сопряженных с затруднениями.
    В течение 970 мин было проплавлено 116 кг губчатого железа со степенью металлизации 96,9 % в кислом тигле с нагревом металла до температуры максимально 1600 °C при содержании в нем углерода от 1,2 до 3,5 %. Загрузка губчатого железа производилась непрерывно через трубу с внутренним диаметром в нижней части 80 мм, непрерывный выпуск металла обеспечивался наклонным положением тигля в ходе экспериментов. Износ тигля при температуре ванны ниже 1500 °C был незначительным, но при температуре выше 1560 °C уже через час наблюдался сильный износ, особенно в верхней части. Расход электроэнергии на 1 т губчатого железа сильно зависел от подводимой мощности и снижался вдвое при увеличении ее с 42 до 78 кВт (рис. 102). При этом производительность плавления повышалась с 10 до 28 т/м2, однако температура металла и содержание в нем углерода возрастали. Таким образом, работа с полным тиглем и максимальной подводимой мощностью может существенно повысить экономичность процесса. Окончательно не подтвердилось предположение о том, что губчатое железо из-за малой его теплопроводности будет расплавляться медленнее, чем скрап. Скорость плавления при стационарном состоянии процесса определялась только количеством подводимого тепла. Поддержание требуемого содержания углерода при достижении стационарности процесса не вызывает затруднений, несмотря на протекание реакций обезуглероживания, и непрерывном растворении в ванне губчатого железа с содержанием углерода, отличным от содержания его в ванне.

    Проведенные эксперименты, хотя и не дали окончательного ответа относительно возможной экономической эффективности процесса переплава губчатого железа в промышленных условиях, но прояснили очень многие технологические и экономические аспекты проблемы. Достаточно отчетливо установлено, что количество шлака должно быть минимальным, а степень металлизации максимальной. В этом случае протекание процесса существенно облегчается, но следует отметить, что одновременно возрастает и стоимость губчатого железа. Работа на кислых шлаках, возможна при использовании только кислой футеровки и при содержании фосфора в губчатом железе не выше допустимого в стали. Ho температура нагрева металла в этом случае не должна превышать 1500 °C. Использование магнезитохромитовых тиглей позволяет нагревать металл до более высоких температур, но необходимость нейтрализации кремнезема шлака влечет за собой увеличение расхода раскислителей, электроэнергии, шлакообразующих и снижение выхода годного. Во всех случаях необходима принимать меры против подстуживания шлака, а возможно необходимо будет разрабатывать и способы его подогрева.
    Весьма важным обстоятельством является обеспечение таких геометрических размеров тигля и электрических параметров установки, при которых средняя часть поверхности металла в тигле будет свободна от шлака, благодаря чему губчатое железо будет попадать непосредственно на металл и увлекаться в его толщу. В противном случае необходимо будет принятие специальных мер для прохождения губчатого железа через толщу шлака. Согласно предложению фирмы "Тиссен" это может быть обеспечено при отношении удельной мощности печи к корню квадратному из частоты, равному 49,5.
    He исключено, что учет всех этих ограничений приведет к созданию какого-то процесса, в котором индукционная печь будет выступать только в качестве агрегата для непрерывного плавления металлизованной шихты, а остальные операции (подогрев, раскисление, легирование, доводка по химическому составу и т.д.) будут осуществляться в агрегатах внепечной металлургии. В качестве такого агрегата в первую очередь может представлять интерес агрегат типа печь - ковш, разработанный фирмами ASEA и SKF, в котором может быть осуществлен весь комплекс отмеченных выше операций.
    Тем не менее губчатое железо, получаемое процессом Хоганес, уже в течение длительного времени используется в качестве шихты в количестве от 10 до 60 % при выплавке в кислых индукционных печах емкостью до 12 т инструментальных и конструкционных сталей, сталей тяжелых поковок и в некоторой степени нержавеющих сталей, а также в основных печах, главным образом при выплавке последних. При этом обрабатываемость, чистота и однородность стали существенно повышаются.
    Губчатое железо используется в виде брикетов длиной 75 мм и диаметром около 88 мм с содержанием 0,17% С и около 1 % O2. Такое соотношение между кислородом и углеродом позволяет поддерживать ванну в состоянии умеренного кипения и обеспечивает получение, если необходимо, даже и очень низких содержаний углерода. Реакция между этими элементами начинается уже при 700 °C, однако взаимодействие их с хромом и другими, имеющими к ним сродство элементами большого развития не получает. Это открывает возможность сочетать использование губчатого железа с более углеродистым феррохромом, чем обычно применяемый при выплавке низкоуглеродистых сталей.
    Во избежание излишних потерь хрома и повышения содержания углерода в расплаве рекомендуется следующий порядок загрузки индукционной печи.
    Никель и молибден загружаются на дно печи, затем подаются брикеты губчатого железа, после расплавления этой части шихты производится скачивание шлака и только затем присадка скрапа и оставшихся легирующих добавок.
    Извлечение хрома, расход электроэнергии и производительность печей находятся на том же уровне, что и при использовании обычной шихты.
    В табл. 28 приведены результаты по извлечению легирующих элементов при выплавке в 12-т индукционной печи аустенитной нержавеющей стали с загрузкой 12,3 % губчатого железа, 24,0 % оборотного скрапа, 9,25 % никеля, 18,5 % феррохрома, 2,85 % ферромолибдена, 31,0 % стального скрапа (0,05 % С) и 2,1 % ферромарганца.
    Фирмы "Тиссен" и "Броун Бовери" заключили соглашение о реализации совместного изобретения, касающегося конструкции мощных индукционных печей и процесса передела в них металлизованного сырья, получаемого по способу Пурофер. Изобретение предусматривает создание печей промышленной частоты емкостью свыше 100 т с удельной мощностью 350 кВт/т при частоте тока 50 Гц или 385 кВт/т при частоте тока 60 Гц. Металлическая шихта будет непрерывно подаваться на оголенную от шлака вспученную под влиянием электромагнитного движения центральную часть поверхности металла в тигле. При этом предполагается использовать опыт работы существующей печи емкостью 60 т, мощностью 21 МВт, используемой для плавки чугуна, и реализовать процесс на печи емкостью свыше 100 т и мощностью 45 МВт.

    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные