Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Лабораторная работа 21

Определение дыхательного коэффициента прорастающих семян

Принцип метода. Дыхательный коэффициент (ДК) - показатель газообмена живых тканей. Это отношение количества выделенного при дыхании углекислого газа к количеству поглощенного при этом кислорода:

ДК = СО2 / О2.

Величина дыхательного коэффициента зависит от ряда причин. Первый фактор - химическая природа окисляемого при дыхании субстрата. Если используются углеводы, то ДК близок к единице:

C6H12O6 + 6O2 = 6 CO2 + 6 H2O.

Если окисляются более восстановленные вещества, жиры и белки, то кислорода потребляется больше, чем выделяется углекислого газа, и ДК меньше единицы. Например, при окислении стеариновой кислоты отношение CO2:O2 равно 18:26, то есть 0,69.

При окислении веществ, содержащих в себе больше кислорода, чем в углеводах, дыхательный коэффициент больше единицы. Так, при дыхании за счет щавелевой кислоты по уравнению 2C2O2H2 + O2 = 4 CO2 + 2H2O дыхательный коэффициент равен 4.

Вторым фактором, определяющим величину ДК, являются условия аэрации. При недостатке кислорода в воздухе, то есть в анаэробных условиях, ДК повышается и в случае окисления углеводов становится выше единицы.

Величина ДК свидетельствует о полноте окисления субстрата. Если при окислении углеводов процесс распада идет не до конца, а накапливаются промежуточные, более окисленные, чем углеводы, продукты, то величина ДК становится меньше единицы. Подобное явление наблюдается у интенсивно растущих объектов.

Цель работы: определить дыхательный коэффициент прорастающих семян.

Ход работы: в опыте используют прибор, состоящий из пробирки, которая плотно закрыта каучуковой пробкой, со вставленной в неё горизонтальной трубкой с делениями. Пробирку поместить в колбу, которая является одновременно и штативом, и термоизолятором.

Прорастающими семенами пшеницы или подсолнечника заполнить ½…2/3 объема пробирки и плотно закрыть ее пробкой с измерительной трубкой. Обязательное условие правильного наблюдения - постоянство температуры прибора, так как его работа связана с изменением объемов газов.

Поэтому смонтированный прибор должен принять комнатную температуру, что достигается в течение 5…7 минут.

623 " style="width:467.25pt;border-collapse:collapse;border:none">

Оборудование и материалы: 1) наклюнувшиеся семена пшеницы мягкой (Triticum aestivum L.), гороха посевного (Pisum sativum L.) и др.; 2) 20% раствор щавелевой кислоты; 3) вода, подкрашенная метиленовой синей; 4) фарфоровая чашка; 5) пинцет; 6) линейка; 7) пипетка с оттянутым концом; 8) полоски фильтровальной бумаги размером 2×6 см.

Установка для определения дыхательного коэффициента : в пробирку с хорошо пригнанной резиновой пробкой вставлена изогнутая под прямым углом тонкая стеклянная трубка. Горизонтальное колено трубки градуируют, прикрепляя к ней при помощи резиновых колечек полоску миллиметровой бумаги, пробирку устанавливают в высокий (по длине пробирки) стакан с ватой.

Контрольные вопросы

1. Классификация ферментативных систем дыхания. Механизмы действия.

2. Пути превращения дыхательного субстрата. Гликолиз. Пентозофосфатный цикл.

3. Окислительное фосфорилирование в митохондриях растений.

4. Цикл Кребса.

5. Понятие о дыхательном коэффициенте. Методы определения дыхательного коэффициента.

6. Экология дыхания. Зависимость дыхания от эндогенных и экзогенных факторов.

Работа 3. Определение дыхательного коэффициента

Важный показатель химической природы дыхательного субстрата – дыхательный коэффициент (ДК ) – отношение объема выделенного углекислого газа (V (СО 2)) к объему поглощенного кислорода (V (О 2)). При окислении углеводов дыхательный коэффициент равен 1, при окислении жиров (более восстановленных соединений) кислорода поглощается больше, чем выделяется углекислого газа и ДК < 1. При окислении органических кислот (менее восстановленных, чем углеводы соединений) ДК > 1.

Величина ДК зависит и от других причин. В некоторых тканях из-за затрудненного доступа кислорода наряду с аэробным происходит анаэробное дыхание, не сопровождающееся поглощением кислорода, что приводит к повышению значения ДК . Величина дыхательного коэффициента обусловлена также полнотой окисления дыхательного субстрата. Если, кроме конечных продуктов, в тканях накапливаются менее окисленные соединения, то ДК < 1.

Прибор для определения дыхательного коэффициента (рис. 8) состоит из пробирки (рис. 8, а) или другого стеклянного сосуда (рис. 8, б ) с плотно пригнанной пробкой, в которую вставлена измерительная трубка со шкалой из миллиметровой бумаги.

Материалы и оборудование. Прорастающие семена подсолнечника, ячменя, гороха, фасоли, льна, пшеницы, 20 %-й раствор гидроксида натрия, шприц на 2 см 3 , цветная жидкость, чашка Петри, химическая пробирка, U-образно изогнутая трубка, эластичная трубка, пробка с отверстием, пинцет анатомический, полоски фильтровальной бумаги (1,5 5 см), миллиметровая бумага, песочные часы на 3 мин, штатив для пробирок.

Ход работы. В пробирку внесите 2 г прорастающих семян подсолнечника. Плотно закройте пробирку пробкой, соединенной эластичной трубкой с изогнутой U-образно стеклянной трубкой, и введите в конец последней при помощи пипетки небольшую каплю жидкости, создавая внутри прибора замкнутую атмосферу. Во время опыта обязательно поддерживайте постоянную температуру. Для этого поставьте прибор в штатив, избегая тем самым нагревания его руками или дыханием. Определите на сколько делений шкалы продвинется капля внутрь трубки за 3 мин. Для получения точного результата вычислите среднюю величину из трех измерений. Полученная величина выражает разницу между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Откройте прибор с семенами и положите в него пинцетом свернутую в кольцо полоску фильтровальной бумаги, предварительно пропитанную раствором NaOH. Снова закройте пробирку, поместите в измерительную трубку новую каплю цветной жидкости и продолжайте измерение скорости ее движения при той же температуре. Новые данные, из которых опять вычислите среднюю величину, выражают объем поглощенного при дыхании кислорода, так как выделившийся углекислый газ поглощается щелочью.

Рассчитайте дыхательный коэффициент по формуле: , где ДК – дыхательный коэффициент; В – объем поглощенного при дыхании кислорода; А – разница между объемом поглощенного при дыхании кислорода и объемом выделенного углекислого газа.

Сравните величины дыхательных коэффициентов предложенных объектов и сделайте вывод о химической природе дыхательных субстратов каждого из объектов.

_________________________________

1 Прибор для наблюдений газообмена при дыхании растений и животных ПГД (учебный): руководство по эксплуатации / под ред. Т.С.Чанова. – М.: Просвещение, 1987. – 8 с.

10.1.5. Дыхательный коэффициент

Дыхательный коэффициент, или соотношение легочного газообмена (ДК), характеризует тип использования пищевых продуктов в обмене веществ. Этот показатель определяют следующим образом:

где V CO 2 - выделение СO 2 , a O 2 - потребление O 2 . В случае окисления глюкозы количество потребляемого кислорода и количество выделяемого углекислого газа равны, так что ДК = 1. Таким образом, значение ДК, равное единице, является показателем окисления углеводов (табл. 10.1).

Таблица 10.1. Значения дыхательных коэффициентов (ДК) и энергетических эквивалентов при окислении различных пищевых веществ

Пищевые вещества ДК Энергетические эквиваленты
кДж/л О 2 ккал/л О 2
Углеводы 1,00 21,1 5,05
Жиры 0,70 19,6 4,69
Белки 0,81 18,8 4,48

Значение ДК в случае окисления жиров может иметь простое объяснение. В связи с тем что в жирных кислотах на 1 атом углерода приходится меньше атомов кислорода, чем в углеводах, их окисление характеризуется значительно более низким дыхательным коэффициентом (ДК = 0,7). В случае окисления чисто белковой пищи ДК оказывается равным 0,81 (табл. 10.1). При смешанной пище у человека дыхательный коэффициент обычно составляет 0,83-0,9. Определенному ДК соответствует определенный энергетический (калорический) эквивалент кислорода (табл. 10.2), который означает количество теплоты, высвобождающейся после потребления организмом 1 л O 2 .

Соотношение между количеством выделяемого СO 2 и потребляемого O 2 зависит как от типа пищевых веществ, так и от преобразования одних пищевых веществ в другие. В тех случаях, когда преимущественную часть рациона составляют углеводы, они могут преобразовываться в жиры. В связи с тем что жиры содержат в своем составе меньше кислорода, чем углеводы, такой процесс сопровождается высвобождением соответствующего количества кислорода. При перенасыщении углеводами количество поглощаемого в тканях кислорода снижается, а ДК увеличивается. В случае насильственного питания (гуси и свиньи) были зарегистрированы такие значения ДК, как 1,38. В периоды голодания и при сахарном диабете ДК может снижаться до величины, равной 0,6. Это связано с усилением интенсивности обмена жиров и белков наряду со снижением метаболизма глюкозы.

Важным фактором, влияющим на величину ДК, является гипервентиляция. Дополнительное количество СO 2 , выдыхаемое при гипервентиляции, поступает из тех обширных запасов СО 2 , которые

Таблица 10.2. Энергетический эквивалент 1 л O 2 при разных дыхательных коэффициентах

Дыхательный коэффициент Энергетический эквивалент
кДж ккал
0,707 19,62 4,686
0,75 19,84 4,739
0,80 20,10 4,801
0,85 20,36 4,862
0,90 20,62 4,924
0,95 20,87 4,985
1,00 21,13 5,047

В практике при приближенных расчетах среднее значение энергетического эквивалента принимают равным 20,2 кДж/л O 2 , что соответствует величине метаболического ДК = 0,82. Диапазон колебаний энергетического эквивалента в зависимости от значения ДК, как правило, невелик. Поэтому погрешность, связанная с использованием среднего значения энергетического эквивалента, не превышает ± 4 %.

(ДК) это отношение объема выделенного в процессе дыхания углекислого газа к объему поглощенного кислорода.

Величина дыхательного коэффициента растений

Величина ДК указывает как на харак­тер окисляемого в процессе дыхания материала, так и на тип дыхания; она может быть равна единице, больше или меньше ее. При окислении углеводов объемы обмениваемых газов угле­кислоты и кислорода равны и отношение С0 2: 0 2 равно единице. В данном случае потребляемый при дыхании кислород идет только на окисление углерода до углекислоты, потому что соот­ношение водорода и кислорода в молекуле глюкозы таково, что для окисления водорода до воды кислорода достаточно в самой молекуле сахара. При окислении ряда органических кислот дыхательный коэффициент растений больше еди­ницы. Так, щавелевая кислота - соединение, более богатое кис­лородом, чем углеводы. Кислорода, имеющегося в молекуле, не только достаточно для окисления водорода до воды, но часть его остается и для окисления углерода; поэтому для полного окисления двух молекул щавелевой кислоты достаточно одной молекулы кислорода: 2С 2 Н 2 О 4 + О 2 → 4СО 2 + 2Н 2 О, ДК (4СО 2: О 2) в этом случае равен 4. В тех случаях, когда растение дышит за счет белков или жи­ров, в молекуле которых много водорода и углерода и мало кис­лорода, ДК меньше единицы, так как для окисления всего углерода и водорода, находящегося в этих соединениях, необхо­димо поглотить большое количество кислорода. При окислении стеариновой кислоты реакция окисления пойдет следующим образом: С 18 Н 26 О 2 + 26О 2 → 18СО 2 + 18Н 2 О. ДК (18СО 2: 26О 2) равен 0,69. Таким образом, в случае окисления углеводов ДК равен еди­нице, органических кислот - больше единицы, белков и жиров - меньше единицы.

Тепловой эффект при дыхании растений

Тепловой эффект будет иметь значение, обратное величине ДК: максимальный тепловой эффект будет при окислении жиров, потому что они наиболее восстановленные соединения. Зависимость величины ДК от характера дыхательного мате­риала наблюдается только в том случае, когда в окружающей среде и тканях растения достаточно кислорода. Однако при окислении одного и того же дыхательного материала, но при недостатке кислорода в окружающей среде и тканях растений величины ДК также могут изменяться. Если кислорода мало, то при окисление идет не до конца и кроме углекислого газа и воды образуются органические кислоты, которые более окислены, чем углеводы. В этом случае ДК будет меньше еди­ницы, так как часть поглощенного кислорода останется в моле­кулах образованных органических кислот, углекислоты же вы­делится меньше. Меньше выделится и энергии, так как часть ее сохранится в органических кислотах.

Отношение объема выделен­ной двуокиси углерода к объему поглощенного кислорода называется дыха­тельным коэффициентом.

ДК = СО 2 (л)/О 2 (л)

Дыхательный коэффициент характеризует тип питательных веществ, преимущественно окисляемых в организме на момент его определения. Его рассчитывают, исходя из формул химических окислительных реакций.

Для углеводов :

С 6 Н 12 О 2 + 6О 2 о - 6СО 2 + 6Н 2 О;

ДК = (6 объемов СО 2)/(6 объемов О 2) = 1

Для жиров :

2С 15 Н48,О 6 + 145О 2 о - 102СО 2 + 98Н 2 О;

ДК = (102 объема СО 2)/(145 объемов О 2) = 0,703

Для белков расчет представляет определенную трудность, так как белки в организме окисляются не полностью. Некоторое количество азота в со­ставе мочевины (NH 2) 2 CO 2 выводится из организма с мочой, потом и фека­лиями. Поэтому для расчета ДК при окислении белка следует знать количе­ство белка, поступившего с пищей, и количество экскретированных азотсо­держащих «шлаков». Установлено, что для окисления углерода и водорода при катаболизме белка и образования 77,5 объема двуокиси углерода необ­ходимо 96,7 объема кислорода. Следовательно, для белков:

ДК = (77,5 объема СО 2)/(96,7 объема О 2) = 0,80

При смешанной пище дыхательный коэффициент составляет 0,8-0,9.

Дыхательный коэффициент при мышечной работе. Главным источником энергии при интенсивной мышечной работе являются углеводы. Поэтому во время работы ДК приближается к единице.

Сразу по окончании работы ДК может резко повыситься. Это явление отражает компенсаторные про­цессы, направленные на удаление из организма избытка двуокиси углерода, источником которого являются так называемые нелетучие кислоты.

Через некоторое время по завершении работы ДК может резко снизиться по сравнению с нормой. Это связано с уменьшением выделения двуокиси углерода легкими вследствие компенсаторной задержки его буферными системами крови, предотвращающими сдвиг рН в основную сторону.

Примерно через час после завершения работы ДК становится нормаль­ным.

Калорический эквивалент кислорода. Определенному дыхательному ко­эффициенту соответствует определенный калорический эквивалент кис­лорода, т.е. количество тепла, которое освобождается при полном окисле­нии 1г питательного вещества (до конечных продуктов) в присутствии 1л кислорода.

Калорический эквивалент кислорода при окислении белков равен 4,8 ккал (20,1 кДж), жиров - 4,7 ккал (19,619 кДж), углеводов - 5,05 ккал (21,2 кДж).

Первоначально газообмен у человека и животных определяли мето­дом Крога в специальных камерах закрытого типа (респираторная ка­мера М.Н. Шатерникова).

В настоящее время полный газовый анализ проводят открытым респи­раторным методом Дугласа-Xолдейна. Метод основан на сборе выдыхаемого воздуха в специальный приемник (воздухонепроницаемый мешок) с последующим определением общего его количества и содержания в нем кислорода и двуокиси углерода при помощи газоанализаторов.

№ 51 Основной обмен и методы его определения. Условия определения основного обмена и факторы, влияющие на его величину. Специфическое динамическое действие пищи. Закон поверхности М. Рубнера.

Основной обмен - минимальное количество энергии, необходимое для обеспечения нормальной жизнедеятельности в условиях относительного физи­ческого и психического покоя. Эта энергия расходуется на процессы клеточ­ного метаболизма, кровообращение, дыхание, выделение, поддержание температуры тела, функционирование жизненно важных нервных центров мозга, постоянную секрецию эндокринных желез.

Печень потребляет 27 % энергии основного обмена, мозг - 19 %, мышцы - 18 %, почки - 10 %, сердце - 7 %, все остальные органы и ткани - 19 %.

Методы определения основного обмена.

Расчет основного обмена по таблицам . Специальные таблицы дают воз­можность по росту, возрасту и массе тела определить средний уровень ос­новного обмена человека. При сопоставлении этих величин с результатами, полученными при исследовании рабочего обмена с помощью приборов, можно вычислить разницу, эквивалентную затратам энергии для выполне­ния работы.

Вычисление основного обмена по гемодинамическим показателям (фор­мула Рида). Расчет основан на взаимосвязи между артериальным давлени­ем, частотой пульса и теплопродукцией организма. Формула дает возмож­ность вычислить процент отклонения величины основного обмена от нормы. Допустимым считается отклонение ±10 %.

ПО = 0,75 (ЧСС + ПД 0,74) - 72,

где ПО - процент отклонений; ЧСС - частота сердечных сокращений

(пульс); ПД - пульсовое давление.

Для определения соответствия основного обмена нормативным дан­ным по гемодинамическим показателям существуют специальные номо­граммы.

Расход энергии в состоянии покоя различными тканями организма не­одинаков. Более активно расходуют энергию внутренние органы, менее ак­тивно - мышечная ткань. Интенсивность основного обмена в жировой ткани в 3 раза ниже, чем в остальной клеточной массе организма. Люди с низкой массой тела производят больше тепла на 1 кг массы тела, чем с вы­сокой. Если рассчитать энегoвыделение на 1 м 2 поверхности тела, то эта разница почти исчезает. Согласно еще одному правилу Рубнера, основной обмен приблизительно пропорционален поверхности тела для разных видов животных и человека.

Отмечены сезонные колебания величины основного обмена - повыше­ние его весной и снижение зимой. На величину основного обмена влияют предшествующая мышечная работа, состояние желез внутренней секреции.

Условия определения основного обмена.

Любая работа - физическая или умственная, а также прием пищи, ко­лебания температуры окружающей среды и другие внешние и внутренние факторы, изменяющие уровень обменных процессов, влекут за собой уве­личение энерготрат.

Поэтому основной обмен определяют в строго контролируемых, искус­ственно создаваемых условиях: утром, натощак (через 12-14 ч после по­следнего приема пищи), в положении лежа на спине, при полном расслаб­лении мышц, в состоянии спокойного бодрствования, в условиях темпера­турного комфорта (18-20 °С). За 3 сут до исследования из рациона исклю­чают белковую пищу. Выражается основной обмен количеством энергоза­трат из расчета 1 ккал на 1 кг массы тела в час .

Факторы, определяющие величину основного обмена. Основной обмен зависит от возраста, роста, массы тела, пола человека. Самый интенсивный основной обмен в расчете на 1 кг массы тела отмечается у детей (у ново­рожденных - 53 ккал/кг в сутки, у детей первого года жизни - 42 ккал/кг). Средние величины основного обмена у взрослых здоровых мужчин состав­ляют 1300-1600 ккал/сут; у женщин эти величины на 10 % ниже. Это свя­зано с тем, что у женщин меньше масса и поверхность тела.

Специфическое динамическое действие пищи - повышение энерготрат организма, обусловленное приемом, перевариванием и усвоением пищи. Специфическое динамическое действие пищи состоит в том, что на переваривание пищи, даже в отсутствии мышечной активности, также расходуется энергия. При этом наибольший расход вызывает переваривание белков. Белки обладают максимально усиливающим действием на обмен веществ, они увеличивают его на 40%, углеводы и жиры увеличивают его всего на 5%. При обычном питании суточный расход на специфическое динамическое действие пищи у взрослого человека составляет около 200 калорий.

Закон поверхности тела Рубнера. Зависимость интенсивности основного обмена от площади поверхности тела была показана немецким физиологом Рубнером для различных животных. Со­гласно этому правилу, интенсивность основного обмена тесно связана с раз­мерами поверхности тела: у теплокровных организмов, имеющих разные ра­змеры тела, с 1 м 2 поверхности рассеивается одинаковое количество тепла.

Таким образом, закон поверхности тела гласит: энергети­ческие затраты теплокровного организма пропорциональны площади поверхности тела.

С возрастом величина основного обмена неуклонно снижается. Сред­няя величина основного обмена у здорового человека равна приблизитель­но 1 ккал/(кг-ч).

№ 52 Рабочий обмен энергии. Энергетические затраты организма при различных видах труда. Методы определения рабочего обмена.

Общий расход энергии человеком зависит от состояния организма и мышечной деятельности.

Мышечная работа сопряжена со значительными затратами энергии (рабочий обмен энергии ), с одной стороны, и увеличением теплопродукции - с другой. У спокойно лежащего человека теплопродукция составляет 35 ккал/(гм 2). Если иссле­дуемый принимает сидячее положение,- на 42 %; в положении стоя - на 70 %, а при спокойной неторопливой ходьбе теплопродукция увеличивается на 180 %. При мышечных нагрузках средней интенсивности КПД работы мышц составляет около 24 %. Из всего коли­чества энергии, расходуемой работающими мышцами, 43 % затрачивается на активацию сокращения, и вся эта энергия переходит в тепло. Только 57 % из общего количества энергии идет на рабочее сокращение.

Разность между энергозатратами при физической нагрузке и энергоза­тратами основного обмена составляет рабочую прибавку, которая тем боль­ше, чем интенсивнее работа. Рабочая прибавка - это вся остальная энер­гия, которую тратит организм в течение суток на физическую и умственную активность.

Сумма основного обмена и рабочей прибавки составляет валовый обмен. Сумма валового обмена и специфического динамического действия пищи называется общим обменом.Предельно допустимая по тяжести работа для данного человека, посто­янно выполняемая им в течение длительного времени, не должна превы­шать по энергозатратам уровень основного обмена более чем в 3 раза. При кратковременных нагрузках энергия выделяется за счет окисления углеводов.

При длительных мышечных нагрузках в организме расщепляются преимущественно жиры, обеспечивая 80 % потребной энергии. У тренированных спортсменов энергия мышечных со­кращений обеспечивается исключительно за счет окисления жиров. У чело­века, занимающегося физическим трудом, энергетические затраты возрас­тают пропорционально интенсивности труда.

По энергетическим затратам все профессии разделены на несколь­ко групп, каждая из которых характеризуется своим суточным расходом энергии.

Коэффициент физической активности. Объективным физическим критерием, определяющим адекватное количест­во расходования энергии для конкретных профессиональных групп людей, является коэффициент физической активности (отно­шение общих энерготрат на все виды жизнедеятельности к величине основ­ного обмена, т.е. расходу энергии в состоянии покоя). Величины коэффициента физической активности одинаковы для мужчин и женщин, но в связи с меньшей величиной массы тела у женщин и соответственно основ­ного обмена энерготраты мужчин и женщин в группах с одним и тем же ко­эффициентом физической активности различны.

Группа I - работники преимущественно умственного труда: научные работники, студенты гуманитарных специальностей. Очень легкая физическая активность; коэффициент физической активности 1,4; расход энергии 1800-2450 ккал/сут.

Группа II - работники, занятые легким физическим трудом: водители трамваев, троллейбусов, работники сферы обслуживания, медицинские сестры, сани­тарки. Легкая физическая актив­ность; коэффициент физической активности 1,6; расход энергии 2100- 2800 ккал/сут.

Группа III - работники средней тяжести труда: слесари, настройщики, водители автобусов, врачи-хирурги. Средняя физическая активность; коэффициент физической активности 1,9; расход энергии 2500-3300 ккал/сут.

Группа IV - работники тяжелого физического труда: строительные рабочие, металлурги. Высокая физическая актив­ность; коэффициент физической активности 2,2; расход энергии 2850- 3850 ккал/сут.

Группа V - работники особо тяжелого труда, только мужчины: механи­заторы, сельскохозяйственные рабочие в посевной и уборочный периоды, горнорабочие, вальщики леса, бетонщики, каменщики, землекопы, грузчи­ки немеханизированного труда, оленеводы и др. Очень высокая физическая активность; коэффициент физической активности 2,5; расход энергии 3750-4200 ккал/сут.

Для каждой группы труда определены средние величины сбалансиро­ванной потребности здорового человека в энергии и пищевых веществах, которые несколько различаются для мужчин и женщин.

№ 53 Температура тела человека и ее суточные колебания. Тепловой баланс гомойотермного организма. Температурная схема тела человека. Методы измерения температуры тела человека.

Гомойотермия. В процессе эволюции у высших животных и человека выработались механизмы, способные поддерживать температуру тела на постоянном уровне независимо от температуры окружающей среды. Температура внутренних органов у них колеблется в пределах 36-38 °С, способствуя оптимальному течению метаболических процессов, катализируя большинство ферментативных реакций и влияя в определенных границах на их скорость.

Постоянная температура необходима и для поддержания нормальных физико-химических показателей - вязкости крови, ее поверхностного натяжения, коллоидно-осмотического давления и др. Температура влияет и на процессы возбуждения, скорость и интенсивность сокращения мышц, процессы секреции, всасывания и защитные реакции клеток и тканей.

Гомойотермные организмы выработали регуляторные механизмы, делающие их менее зависимыми от окружающих условий. Они способны избегать перегревания при слишком высокой и переохлаждения при слишком низкой температуре воздуха.

Оптимальная температура тела у человека составляет 37 °С; верхняя летальная температура - 43,4 °С. При более высокой температуре начинается внутриклеточная денатурация белка и необратимая гибель; нижняя летальная температура составляет 24 °С. В экстремальных условиях резких изменений окружающей температуры гомойотермные животные реагируют реакцией стресса (температурный - тепловой или холодовой - стресс). С помощью этих реакций такие животные поддерживают оптимальный уровень температуры тела. Гомойотермия у человека вырабатывается в течение жизни.

Температура тела человека, а также высших животных подвержена более или менее правильным суточным колебаниям даже при одних и тех же условиях питания и физической активности.

Температура тела днем выше, чем ночью, и в течение суток колеблется в пределах 0,5-3 °С, снижаясь до минимального уровня в 3-4 ч утра и достигая максимума к 16-18 ч вечера. Суточный ритм температурной кривой не связан непосредственно со сменой периодов активности и покоя, поскольку он сохраняется и в том случае, если человек постоянно находится в полном покое. Этот ритм поддерживается без каких-либо внешних регулирующих факторов; он присущ самому организму и представляет собой истинно эндогенный ритм.

У женщин выражены месячные циклы колебаний температуры тела. температура повышается после приема пиши (специфическое динамическое действие пищи), при мышечной работе, нервном напряжении.

Температурная схема тела , которая определяется различным уровнем обмена веществ в разных органах. Температура тела в подмышечной впадине - 36,8 °С, на ладонных поверхностях руки - 25-34 °С, в прямой кишке - 37,2-37,5 °С, в ротовой полости - 36,9 °С. Самая низкая температура отмечается в пальцах нижних конечностей, а самая высокая - в печени.

Вместе с тем даже в одном и том же органе существуют значительные температурные градиенты, а ее колебания составляют от 0,2 до 1,2 °С. Так, в печени температура равна 37,8-38 °С, а в мозге - 36,9-37,8 °С. Значительные температурные колебания наблюдаются при мышечной нагрузке. У человека интенсивная мышечная работа приводит к повышению температуры сокращающихся мышц - на 7 °С.

При купании человека в холодной воде температура стопы падает до 16 °С без каких-либо неприятных ощущений.

Индивидуальные особенности температурной схемы тела:

Здоровый человек имеет относительно постоянную температурную схему тела;

Особенности температурной схемы генетически детерминированы, в первую очередь индивидуальной интенсивностью метаболических процессов;

Индивидуальные особенности температурной схемы тела определяются влияниями гуморальных (гормональных) факторов и тонусом вегетативной нервной системы;

Температурная схема тела совершенствуется в процессе воспитания, определяется образом жизни и особенно закаливанием. Вместе с тем она динамична в известных пределах, зависит от особенностей профессии, экологических условий, характера и других факторов.

№ 54 Механизмы теплопродукции. Обмен веществ как источник образования тепла. Роль отдельных органов в теплопродукции и регуляция этого процесса.

Центры теплообразования. В области латерально-дорсального гипоталамуса обнаружены центры теплообразования. Их разрушение приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях пониженной температуры окружающей среды. Температура их тела в этих условиях начинает падать, и животные переходят в состояние гипотермии. Электрическое раздражение соответствующих центров гипоталамуса вызывает у животных следующий синдром: 1) сужение поверхностных сосудов кожи. Вазоконстрикция достигается активацией симпатических центров заднего гипоталамуса.; 2) пилоэрекцию- реакция выпрямления волос тела.; 3) мышечную дрожь - увеличивает величину теплопродукции в 4–5 пять раз. Двигательный центр дрожи располагается в дорсомедиальной части заднего гипоталамуса. Он тормозится повышенной внешней температурой и возбуждается при её понижении. Импульсы из центра дрожи вызывают генерализованное повышение мышечного тонуса. Повышенный мышечный тонус приводит к возникновению ритмических рефлексов с мышечных веретён, что и вызывает дрожь; 4) увеличение секреции надпочечников.

Взаимодействие центров терморегуляции. Между центрами теплоотдачи переднего гипоталамуса и центрами теплопродукции заднего гипоталамуса существуют реципрокные взаимоотношения. При усилении активности центров теплопродукции тормозится деятельность центров теплоотдачи и наоборот. При снижении температуры тела включается активность нейронов заднего гипоталамуса; при повышении температуры тела активируются нейроны переднего гипоталамуса.

Механизмы теплопродукции. При снижении температуры окружающей среды эфферентная импульсация от нейронов заднего отдела гипоталамуса распространяется на α-мотонейроны спинного мозга. Эти влияния приводят к сокращению скелетных мышц. При сокращении мышц возрастает гидролиз АТФ. Вследствие этого увеличивается произвольная мышечная активность.

Одновременно при охлаждении возрастает так называемый терморегуляционный тонус мышц. Терморегуляционный тонус представляет своеобразную микровибрацию мышечных волокон. В результате теплопродукция возрастает на 20-45 % от исходного уровня. При более значительном охлаждении терморегуляционный тонус переходит в мышечную холодовую дрожь. Холодовая мышечная дрожь представляет собой непроизвольную ритмическую активность поверхностно расположенных мышц. В результате теплопродукция возрастает в 2-3 раза по сравнению с исходным уровнем.

Механизмы мышечной дрожи связаны с распространением возбуждения из гипоталамуса через покрышку среднего мозга и через красное ядро к α-мотонейронам спинного мозга и от них - к соответствующим мышцам.

Одновременно при охлаждении в скелетных мышцах, печени и буром жире активируются процессы окисления и снижается эффективность окислительного фосфорилирования. За счет этих процессов, так называемого не сократительного термогенеза, теплопродукция может возрасти в 3 раза.

Регуляция несократительного термогенеза осуществляется активацией симпатической нервной системы, гормонами щитовидной железы и мозгового слоя надпочечников.

№ 55 Механизмы теплоотдачи. Способы отдачи тепла организмом. Физиологические механизмы теплоотдачи.

Поддержание температуры тела на оптимальном для метаболизма уровне осуществляется за счет регулирующего влияния ЦНС. За счет нервных и прямых гуморальных влияний, в которых участвует ряд олигопептидов, например бомбезин, в рассматриваемой функциональной системе формируются процессы, направленные на восстановление сформировавшихся изменений температурной схемы тела. Эти процессы включают механизмы теплопродукции и теплоотдачи.

Центры теплоотдачи. В области передних ядер гипоталамуса обнаружены центры теплоотдачи. Разрушение этих структур приводит к тому, что животные утрачивают способность поддерживать постоянство температуры тела в условиях высокой температуры окружающей среды. Температура их тела при этом начинает возрастать, животные переходят в состояние гипертермии, причем гипертермия может развиться даже при комнатной температуре. Раздражение этих структур через вживленные электроды электрическим током вызывает у животных характерный синдром: одышку, расширение поверхностных сосудов кожи, падение температуры тела. Вызванная предварительным охлаждением мышечная дрожь у них прекращается.

Теплоотдачу (физическую терморегуляцию) определяют физические процессы:

Перемещение теплого воздуха с поверхности тела путем контактной или дистантной конвекции;

Теплоизлучение (радиация);

Испарение жидкости с поверхности кожи и верхних дыхательных

Выделение мочи и кала.

Физическая терморегуляция осуществляется следующими путями.

Контактная конвекция - прямой обмен тепла между двумя объектами с разной температурой, находящимися в прямом контакте друг с другом.

Дистантная конвекция - переход тепла в поток воздуха, который движется около поверхности тела и, нагреваясь, заменяется новым, более холодным.

Радиация - отдача тепла путем излучения электромагнитной энергии в

виде инфракрасных лучей.

Регуляция теплоотдачи. Конвекция, теплоизлучение и испарение тепла прямо пропорциональны теплоемкости окружающей среды.

Теплоотдача зависит от объема поверхности тела. Известно, что многие животные на холоде сворачиваются в клубок, занимая меньший объем. Процессы конвекции, излучения и испарения тепла зависят от свойств кожного покрова. Шерстный покров кожи у животных препятствует теплоотдаче.

Сосудистые реакции при перегревании. В основе всех физических процессов теплоотдачи у человека лежат физиологические процессы, связанные с изменением под влиянием окружающей температуры просвета поверхностных сосудов кожи. При действии высокой температуры сосуды расширяются, при действии низкой - суживаются. Эти реакции осуществляются за счет активации вегетативной нервной системы - парасимпатического отдела в первом случае и симпатического - во втором.

В механизмах расширения сосудов кожи принимает участие брадикинин, который продуцируется потовыми железами через холинергические симпатические волокна.

Теплоотдача в водной среде. Процессы теплоотдачи зависят от физических свойств окружающей среды. Наиболее сложно меняются процессы теплоотдачи, так же как и теплопродукции, в водной среде. Прохладная вода обладает наибольшей теплоемкостью. В воде исключается испарение. Одновременно вода оказывает физическое давление на покровы тела, происходит перераспределение массы тела. Температура воды оказывает раздражающее действие на рецепторы кожи и интерорецепторы.

Потоотделение. Наиболее существенным механизмом теплоотдачи является потоотделение. С 1 г пара организм теряет около 600 кал тепла. Потоотделение имеет существенное значение для поддержания оптимального уровня температуры тела в условиях повышенной температуры окружающей среды, особенно в жарких странах. Установлено, что не все люди в равной степени обладают способностью к усиленному потоотделению в условиях повышенной температуры.

№ 56 Функциональная система, поддерживающая оптимальную для метаболизма температуру крови. Характеристика её узловых механизмов.

Функциональная система, определяющая оптимальную для метаболизма температуру тела, объединяет две подсистемы: внутренней эндогенной саморегуляции и целенаправленного поведения. Эндогенные механизмы саморегуляции за счет процессов теплопродукции и тепловыделения определяют поддержание необходимой для метаболизма температуры тела. Функциональная система:

Полезный приспособительный результат

Показатель, ради которого работает данная функциональная система,- температура крови. С одной стороны, она обеспечивает нормальное течение процессов метаболизма, а с другой - сама определяется их интенсивностью.

Для нормального течения метаболических процессов гомойотермные животные, в том числе и человек, вынуждены поддерживать температуру тела на относительно постоянном уровне. Однако это постоянство условно. Температура различных органов подвержена колебаниям, границы которых зависят от времени суток, функционального состояния организма, теплоизоляционных свойств одежды и др.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные