Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri– расстояние до оси вращения. Следовательно,

Сопоставив и можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Основной закон динамики вращательного движения.

Динамика вращательного движения

Основной закон динамики вращательного движения:

или M=Je , где М - момент силы M=[ r · F ] , J - момент инерции -момент импульса тела.

если М(внешн)=0 - закон сохранения момента импульса. - кинетическая энергия вращающегося тела.

работа при вращательном движении.

Закон сохранения момента импульса.

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p=mv - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где α - угол между векторами r и р, l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса ri со скоростью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу vi = ωri, получим

Таким образом, момент импульса твердого тела относительно оси равен моменту инерции тела относительно той же оси, умноженному на угловую скорость. Продифференцируем уравнение (2) по времени:

Эта формула - еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

В замкнутой системе момент внешних сил М=0 и откуда

Выражение (4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса также как и закон сохранения энергии является фундаментальным законом природы. Он связан со свойством симметрии пространства - его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Здесь мы продемонстрируем закон сохранения момента импульса с помощью скамьи Жуковского. Человек, сидящий на скамье, вращающаяся вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 2), вращается внешним механизмом с угловой скоростью ω1. Если человек прижмет гантели к телу, то момент инерции системы уменьшится. Но момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения ω2 увеличивается. Аналогичным образом, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, с целью уменьшить свой момент инерции и тем самым увеличить угловую скорость вращения.

Давление в жидкости и газе.

Молекулы газа, совершая хаотическое, хаотическое движение, не связаны или довольно слабо связаны силами взаимодействия, из-за чего движутся практически свободно и в результате соударений разлетаются во все стороны, при этом заполняя весь предоставленный им объем, т. е. объем газа определяется объемом занимаемого газом сосуда.

А жидкость же, имея определенный объем, принимает форму того сосуда, в который она заключена. Но в отличие от газов в жидкостях среднее расстояние между молекулами в среднем сохраняется постоянным, поэтому жидкость обладает практически неизменным объемом.

Свойства жидкостей и газов во многом сильно отличаются, но в нескольких механических явлениях их свойства определяются одинаковыми параметрами и идентичными уравнениями. По этой причине гидроаэромеханика - раздел механики, который изучает равновесие и движение газов и жидкостей, взаимодействие между ними и между обтекаемыми ими твердыми телами, - т.е. применяется единый подход к изучению жидкотей и газов.

В механике жидкости и газы с большой степенью точности рассматриваются как сплошные, непрерывное распределенные в занятой ими части проставранства. У газов плостность от давления зависит существенно. Из опыта установлено. что сжимаемостью жидкости и газа часто можно пренебречь и целесообразно пользоваться единым понятие - несжимаемостью жидкости - жидкости, с всюду одинаковой плотностью, которая не изменяется со течением времени.

Поместим в покоящуюся тонкую пластинку, в результате части жидкости, расположенные по разные стороны от пластины, будут действовать на каждый ее элемент ΔS с силами ΔF, которые будут равны по модулю и направленый перпендикулярно площадке ΔS независимо от ориентации площадки, в ином случае наличие касательных сил привело бы частицы жидкости в движение (рис.1)

Физическая величини, опеределяемая нормальной силой, действующей со стороны жидкости (или газа) на единицу площади, называется давлением p/ жидкости (или газа): p=ΔF/ΔS.

Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, которая равномерно распределена по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по воем направлениям, причем давление одинаково передается по всему объему, который занимает покоящаяся жидкость.

Исследуем влияние веса жидкости на распределение давления внутри неподвижной несжимаемой жидкости. При равновесии жидкости давление вдоль любой горизонтальной всегда одинаково, иначе не было бы равновесия. Значит свободная поверхность покоящейся жидкости всегда горизонтальна (притяжение жидкости стенками сосуда не учитываем). Если жидкость несжимаема, то плотность данной жидкости не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности ρ вес P=ρgSh, при этом давление на нижнее основание: p=P/S=ρgSh/S=ρgh, (1)

т. е. давление линейно изменяется с высотой. Давление ρgh называется гидростатическим давлением.

Согласно формуле (1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): FА=ρgV, где ρ - плотность жидкости, V- объем погруженного в жидкость тела.

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 – кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

Выражение для кинетической энергии вращающегося тела с учетом, что линейная скорость произвольной материальной точки, составляющей тело, относительно оси вращения равна имеет вид

где момент инерции тела относительно выбранной оси вращения, его угловая скорость относительно этой оси, момент импульса тела относительно оси вращения.

Если тело совершает поступательно вращательное движение, то вычисление кинетической энергии зависит от выбора полюса, относительно которого описывается движение тела. Конечный результат будет один и тот же. Так, если для катящегося со скоростью vбез проскальзывания круглого тела с радиусом R и коэффициентом инерции k полюс взять в его ЦМ, в точке C, то его момент инерции , а угловая скорость вращения вокруг оси С . Тогда кинетическая энергия тела .

Если полюс взять в точке О касания тела и поверхности, через которую проходит мгновенная ось вращения тела, то его момент инерции относительно оси О станет равным . Тогда кинетическая энергия тела с учетом, что относительно параллельных осей угловые скорости вращения тела одинаковы и вокруг оси О тело совершает чистое вращение, будет равна . Результат тот же.

Теорема о кинетической энергии тела, совершающего сложное движение, будет иметь такой же вид, что и для его поступательного движения: .

Пример 1. К концу нити, накрученной на цилиндрический блок радиуса R и массой M, привязано тело массой m. Тело поднимают на высоту h и отпускают (рис.65). После неупругого рывка нити тело и блок сразу же начинают двигаться совместно. Какое тепло выделится при рывке? Чему будут равны ускорение движения тела и натяжение нити после рывка? Какими будут скорость тела и пройденный им путь после рывка нити через время t?

Дано : M, R, m, h, g, t. Найти : Q -?,a - ?, T - ?,v -?, s - ?

Решение : Скорость тела перед рывком нити . После рывка нити блок и тело придут во вращательное движение относительно оси блока О и будут вести себя как тела с моментами инерции относительно этой оси, равными и . Их общий момент инерции относительно оси вращения .

Рывок нити – быстрый процесс и при рывке имеет место закон сохранения момента импульса системы блок-тело, который ввиду того, что тело и блок сразу же после рывка начинают двигаться совместно, имеет вид: . Откуда начальная угловая скорость вращения блока , а начальная линейная скорость тела .

Кинетическая энергия системы ввиду сохранения ее момента импульса сразу после рывка нити равна . Выделившееся при рывке тепло согласно закону сохранения энергии



Динамические уравнения движения тел системы после рывка нити не зависят от их начальной скорости. Для блока оно имеет вид или , а для тела . Складывая эти два уравнения, получим . Откуда ускорение движения тела . Сила натяжения нити

Кинематические уравнения движения тела после рывка будут иметь вид , где все параметры известны.

Ответ: . .

Пример 2 . Двум круглым телам с коэффициентами инерции (полый цилиндр) и (шар), находящимся в основании наклонной плоскости с углом наклона α сообщают одинаковые начальные скорости, направленные вверх вдоль наклонной плоскости. На какую высоту и за какое время поднимутся тела на эту высоту? Каковы ускорения подъема тел? Во сколько раз отличаются высоты, времена и ускорения подъема тел? Тела движутся вдоль наклонной плоскости без проскальзывания.

Дано : . Найти :

Решение : На тело действуют: сила тяжести mg , реакция наклонной плоскости N , и сила трения сцепления (рис.67). Работы нормальной реакции и силы трения сцепления (нет проскальзывания и в точке сцепления тела и плоскости тепло не выделяется.) равны нулю: , поэтому для описания движения тел возможно применение закона сохранения энергии: . Откуда .

Времена и ускорения движения тел найдем из кинематических уравнений . Откуда , . Отношение высот, времен и ускорений подъема тел:

Ответ : , , , .

Пример 3 . Пуля массой , летящая со скоростью , ударяет в центр шара массой M и радиусом R, прикрепленному к концу стержня массой mи длиной l, подвешенному в точке О за его второй конец, и вылетает из него со скоростью (рис.68). Найти угловую скорость вращения системы стержень-шар сразу же после удара и угол отклонения стержня после удара пули.

Дано : . Найти :

Решение: Моменты инерции стержня и шара относительно точки О подвеса стержня по теореме Штейнера: и . Полный момент инерции системы стержень-шар . Удар пули – быстрый процесс, и имеет место закон сохранения момента импульса системы пуля-стержень-шар (тела после столкновения приходят во вращательное движение): . Откуда угловая скорость движения системы стержень-шар сразу же после удара .



Положение ЦМ системы стержень-шар относительно точки подвеса О: . Закон сохранения энергии для ЦМ системы после удара с учетом закона сохранения момента импульса системы при ударе имеет вид . Откуда высота поднятия ЦМ системы после удара . Угол отклонения стержня после удара определяется условием .

Ответ: , , .

Пример 4 . К круглому телу массой m и радиусом R, с коэффициентом инерции k, вращающемуся с угловой скоростью , прижата с силой N колодка (рис.69). Через какое время остановится цилиндр и какое тепло выделится при трении колодки о цилиндр за это время? Коэффициент трения между колодкой и цилиндром равен .

Дано : Найти :

Решение : Работа силы трения до остановки тела по теореме о кинетической энергии равна . Выделившееся при вращении тепло .

Уравнение вращательного движения тела имеет вид . Откуда угловое ускорение его замедленного вращения . Время вращения тела до его остановки .

Ответ : , .

Пример 5 . Круглое тело массой m и радиусом R с коэффициентом инерции k раскручивают до угловой скорости против часовой стрелки и ставят на горизонтальную поверхность, стыкующуюся с вертикальной стенкой (рис.70). Через какое время тело остановится и сколько оно сделает оборотов до остановки? Чему будет равно тепло, выделившееся при трении тела о поверхности за это время? Коэффициент трения тела о поверхности равен .

Дано : . Найти :

Решение : Тепло, выделившееся при вращении тела до его остановки, равно работе сил трения, которая может быть найдена по теореме о кинетической энергии тела. Имеем .

Реакция горизонтальной плоскости . Силы трения, действующие на тело со стороны горизонтальной и вертикальной поверхностей равны: и .Из системы этих двух уравнений получим и .

С учетом этих соотношений уравнение вращательного движения тела имеет вид ( . Откуда угловое ускорение вращения тела равно . Тогда время вращения тела до его остановки , а число сделанных им при этом оборотов .

Ответ : , , , .

Пример 6 . Круглое тело с коэффициентом инерции k скатывается без проскальзывания с вершины полусферы радиусом R, стоящей на горизонтальной поверхности (рис.71). На какой высоте и с какой скоростью оно оторвется от полусферы и с какой скоростью упадет на горизонтальную поверхность?

Дано : k, g, R. Найти :

Решение : На тело действуют силы . Работы и 0, (нет проскальзывания и тепло в точке сцепления полусферы и шара не выделяется) поэтому для описания движения тела возможно применение закона сохранения энергии. Второй закон Ньютона для ЦМ тела в точке его отрыва от полусферы с учетом, что в этой точке имеет вид , откуда . Закон сохранения энергии для начальной точки и точки отрыва тела имеет вид . Откуда высота и скорость отрыва тела от полусферы равны , .

После отрыва тела от полусферы изменяется только его поступательная кинетическая энергия, поэтому закон сохранения энергии для точек отрыва и падения тела на землю имеет вид . Откуда с учетом получим . Для тела, скользящего по поверхности полусферы без трения, k=0 и , , .

Ответ: , , .

Задачи

1. Определить, во сколько раз эффективная масса больше тяготеющей массы поезда массой 4000 т, если масса колес составляет 15% от массы поезда. Колеса считать дисками диаметром 1,02 м. Как изменится ответ, если диаметр колес будет в два раза меньше?

2. Определить ускорение, с которым скатывается колесная пара массой 1200 кг с горки с уклоном 0,08. Колеса считать дисками. Коэффициент сопротивления качению 0,004. Определить силу сцепления колес с рельсами.

3. Определить, с каким ускорением закатывается колесная пара массой 1400 кг на горку с уклоном 0,05. Коэффициент сопротивления 0,002. Каким должен быть коэффициент сцепления, чтобы колеса не буксовали. Колеса считать дисками.

4. Определить, с каким ускорением скатывается вагон массой 40 т, с горки с уклоном 0,020, если у него восемь колес массой 1200 кг и диаметром 1,02 м. Определить силу сцепления колес с рельсами. Коэффициент сопротивления 0,003.

5. Определить силу давления тормозных колодок на бандажи, если поезд массой 4000 т тормозит с ускорением 0,3 м/с 2 . Момент инерции одной колесной пары 600 кг·м 2 , количество осей 400, коэффициент трения скольжения колодки 0,18, коэффициент сопротивления качению 0,004.

6. Определить силу торможения, действующую на четырехосный вагон массой 60 т на тормозной площадке сортировочной горки, если скорость на пути 30 м уменьшилась от 2 м/с до 1,5 м/с. Момент инерции одной колесной пары 500 кг·м 2 .

7. Скоростемер локомотива показал увеличение скорости поезда в течении одной минуты от 10 м/с до 60 м/c. Вероятно, произошло буксование ведущей колесной пары. Определить момент сил, действующих на якорь электродвигателя. Момент инерции колесной пары 600 кг·м 2 , якоря 120 кг·м 2 . Передаточное отношение зубчатой передачи 4,2. Сила давления на рельсы 200 кН, коэффициент трения скольжения колес по рельсу 0,10.


11. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ВРАЩАТЕЛЬОГО

ДВИЖЕНИЯ

Выведем формулу кинетической энергии вращательного движения. Пусть тело вращается с угловой скоростью ω относительно неподвижной оси. Любая небольшая частица тела совершает поступательное движение по окружности со скоростью , где r i – расстояние до оси вращения, радиус орбиты. Кинетическая энергия частицы массы m i равна . Полная кинетическая энергия системы частиц равна сумме их кинетических энергий. Просуммируем формулы кинетической энергии частиц тела и вынесем за знак суммы половину квадрата угловой скорости, которая одинакова для всех частиц, . Сумма произведений масс частиц на квадраты их расстояний до оси вращения является моментом инерции тела относительно оси вращения . Итак, кинетическая энергия тела, вращающегося относительно неподвижной оси, равна половине произведения момента инерции тела относительно оси на квадрат угловой скорости вращения :



С помощью вращающихся тел можно запасать механическую энергию. Такие тела называются маховиками. Обычно это тела вращения. Известно с древности применение маховиков в гончарном круге. В двигателях внутреннего сгорания во время рабочего хода поршень сообщает механическую энергию маховику, который затем три последующих такта совершает работу по вращению вала двигателя. В штампах и прессах маховик приводится во вращение сравнительно маломощным электродвигателем, накапливает механическую энергию почти в течение полного оборота и в кратковременный момент удара отдает ее на работу штампования.

Известны многочисленные попытки применения вращающихся маховиков для привода в движение транспортных средств: легковых автомобилей, автобусов. Их называют махомобили, гировозы. Таких экспериментальных машин было создано немало. Было бы перспективно применять маховики для аккумулирования энергии при торможении электропоездов с целью использования накопленной энергии при последующем разгоне. Известно, что маховичный накопитель энергии используется на поездах метрополитена Нью-Йорка.

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные