Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Содержание статьи

ГАЗ –одно из агрегатных состояний вещества, в котором составляющие его частицы (атомы, молекулы) находятся на значительных расстояниях друг от друга и находятся в свободном движении. В отличие от жидкости и твердого тела, где молекулы находятся на близких расстояниях и связаны друг с другом значительными по величине силами притяжения и отталкивания, взаимодействие молекул в газе проявляется лишь в короткие моменты их сближения (столкновения). При этом происходит резкое изменение величины и направления скорости движения сталкивающихся частиц.

Название «газ» происходит от греческого слова «haos» и было введено Ван Гельмонтом еще в начале 17 в., оно хорошо отражает истинный характер движения частиц в газе, отличающегося полной беспорядочностью, хаотичностью. В отличие, например, от жидкости газы не образуют свободной поверхности и равномерно заполняют весь доступный им объем.

Газообразное состояние, если причислять к нему и ионизованные газы, является самым распространенным состоянием вещества во Вселенной (атмосферы планет, звезды, туманности, межзвездное вещество и т.д.).

Идеальный газ.

Законы, определяющие свойства и поведение газа, легче всего формулируются для случая так называемого идеального газа или газа относительно низкой плотности. В таком газе среднее расстояние между молекулами предполагается большим по сравнению с радиусом действия межмолекулярных сил. Порядок величины этого среднего расстояния можно определить как , где – n число частиц в единице объема или числовая плотность газа. Если пользоваться приближенной моделью взаимодействия частиц газа, в которой молекулы представляются твердыми упругими шариками диаметром d , то условие идеальности газа записывается как nd 3 = 3·10 –8 см. Это означает, что газ является идеальным, если n p = 1атм, температура T = 273K ), поскольку при этих условиях число молекул в одном кубическом сантиметре газа равно 2,69·10 19 см –3 (число Лошмидта). При фиксированном давлении газа условие идеальности удовлетворяется тем лучше, чем выше температура газа, поскольку плотность газа, как это следует из уравнения состояния идеального газа в этом случае обратно пропорциональна его температуре.

Законы идеального газа были в свое время открыты опытным путем. Так еще в 17 в. был установлен закон Бойля – Мариотта

(1) pV = const,

(2) из которого следует, что изменение объема газа V при постоянной температуре T сопровождается таким изменением его давления p , что их произведение остается постоянной величиной.

Если газ находится в условиях, когда постоянным сохраняется его давление, но меняется температура (такие условия можно осуществить, например, поместив газ в сосуд, закрытый подвижным поршнем), то выполняется закон Гей-Люссака

т.е. при фиксированном давлении отношение объема газа к его температуре является постоянным. Оба указанных закона объединяются в универсальное уравнение Клапейрона – Менделеева, которое называется также уравнением состояния идеального газа

(3) pV = nRT .

Здесь n – число молей газа, R = 8,317 Дж/моль·K – универсальная газовая постоянная. Молем любого вещества называется такое его количество, масса которого в граммах равна атомной или молекулярной массе вещества М . В свою очередь, молекулярной массой вещества называется отношение массы молекулы этого вещества к так называемой атомной единице массы (а.е.м.), в качестве которой принимается масса равная 1/12 массы атома 12 С (изотопа углерода с массовым числом 12) (см . ИЗОТОПЫ). При этом 1 а.е.м. = 1,66·10 –27 кг.

Один моль любого вещества содержит одно и то же число молекул, равное числу Авогадро моль –1 . Число молей данного количества вещества определяется отношением массы вещества m к его молекулярной массе, т.е. n = m /M .

Используя соотношение n = N /V = nN A /V , уравнение состояния можно представить в виде, связывающем между собой давление, плотность и температуру

(4) p = nkT ,

где вводится величина

k = R /N A = 1,38·10 –23 Дж/K , которая носит название постоянной Больцмана.

Уравнение состояния в форме (3) или (4) может быть обосновано также методами кинетической теории газов, что позволяет, в частности, придать более отчетливый физический смысл постоянной Больцмана k (см . МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ).

Из уравнения состояния идеального газа непосредственно следует закон Авогадро : при одинаковых давлениях и температурах в равных объемах любого газа содержится одинаковое число молекул. Из этого закона вытекает и обратное утверждение: различные газы, содержащие одинаковое число молекул, при одинаковых давлениях и температурах занимают одинаковый объем. В частности, при нормальных условиях моль любого газа занимает объем

Исходя из этого значения легко определить число Лошмидта

Где бv 2 с – среднее значение квадрата скорости молекул, m – масса молекулы.

Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражением

Кинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с E k дается соотношением

Это соотношение позволяет, в частности, придать более отчетливый физический смысл постоянной Больцмана

k = 1,38·10 –23 Дж/K, которая фaктически является переводным коэффициентом, определяющим, какая часть джоуля содержится в градусе.

Используя (6) и (7), находим, что (1/3)m бv 2 с = kT . Подстановка этого соотношения в (5) приводит к уравнению состояния идеального газа в форме

p = nkT , которое уже было получено из уравнения Клапейрона – Менделеева (3).

Из уравнений (6) и (7) можно определить значение средне-квадратичной скорости молекул

Расчеты по этой формуле при Т = 273К дают для молекулярного водорода бv с кв = 1838 м/с, для азота – 493 м/с, для кислорода – 461 м/с и т.д.

Распределение молекул по скоростям.

Приведенные выше значения бv с кв позволяют составить представление о порядке величины среднего значения тепловых скоростей молекул для различных газов. Разумеется, не все молекулы движутся с одинаковыми скоростями. Среди них есть определенная доля молекул с малыми значениями скорости и, наоборот, некоторое число достаточно быстрых молекул. Однако, большая часть молекул обладает скоростями, значения которых группируются относительно наиболее вероятной при данной температуре величины, которая не очень существенно отличается от значений, даваемых формулой (8). Такое распределение молекул по скоростям устанавливается в газе в результате обмена импульсом и энергией при многочисленных столкновениях молекул между собой и со стенками сосуда, Вид этого универсального (не меняющегося во времени) распределения молекул по скоростям, соответствующего состоянию теплового равновесия в газе, был впервые теоретически установлен Максвеллом. С помощью распределения Максвелла определяется относительная доля молекул, абсолютные скорости которых лежат в некотором узком интервале значений dv .

Вид распределения dn /ndv , описываемого выражением (9), для двух различных температур (T 2 > T 1) представлен на рис.1.

С помощью максвелловского распределения можно вычислить такие важные характеристики газа как средняя, среднеквадратичная и наиболее вероятная скорость теплового движения молекул, рассчитать среднее число столкновений молекул со стенкой сосуда и т.д. Средняя тепловая скорость молекул, например, которая представляет собой фактически средне-арифметическую скорость, определяется при этом формулой

Наиболее вероятная скорость молекул, соответствующая максимуму кривых, представленных на рис. 1, определена как

Значения скоростей, определяемых формулами (8), (10) и (11), оказываются близкими по величине. При этом

(12) бv с = 0,93 бv с кв , n в = 0,82бv с кв

Внутренняя энергия и теплоемкость идеального газа.

Чтобы изменить состояние некоторого заданного объема газа (например, нагреть или охладить его), надо либо совершить над ним механическую работу, либо передать ему некоторое количество тепла за счет контакта с другими телами. Количественно эти изменения выражаются с помощью первого начала термодинамики, которое отражает важнейший закон природы: сохранение механической и тепловой энергии тела. Формулировку первого начала для бесконечно малого квазистатического процесса можно представить в виде (см . ТЕРМОДИНАМИКА).

(13) dQ = dU + dA

Здесь dQ элементарное количество тепла, передаваемое телу, dU – изменение его внутренней энергии,

dA = pdV – элементарная работа, совершаемая газом при изменении его объема (эта работа равна с обратным знаком элементарной работе, совершаемой внешними силами над газом). Обозначение dU соответствует полному дифференциалу от переменной U . Это означает, что приращение внутренней энергии при переходе газа из некоторого состояния 1 в состояние 2 можно представить в виде интеграла

Обозначения dQ и dA означают, что в общем случае интеграл от них нельзя представить в виде разности соответствующих значений в конечном и начальном состоянии газа, поэтому интегрирование (13) по всему процессу приводит к соотношению

Q = U 2 – U 1 + A

Вводится понятие теплоемкости газа как количества тепла, которое нужно сообщить газу, чтобы повысить его температуру на один градус Кельвина. Тогда по определению

Далее под С подразумевается теплоемкость, отнесенная к одному молю газа, или молярная теплоемкость. Внутренняя энергия U также определена для одного моля газа. Если газ нагревается при постоянном объеме (изохорический процесс), т.е. совершаемая газом работа равна нулю, то

Если состояние газа меняется при постоянном давлении (изобарический процесс), то в соответствии с (13)

Использование уравнение состояния идеального газа (3) при v = 1 дает

Следовательно, молярные теплоемкости идеального газа при постоянном давлении и при постоянном объеме связаны соотношением

(16) C p = C v + R

Внутренняя энергия газа, в общем случае, состоит из кинетической энергии поступательного и вращательного движения молекул, энергии внутреннего (колебательного) движения атомов в молекуле, а также потенциальной энергии взаимодействия молекул. В случае идеального газа вкладом последнего слагаемого в полную энергию можно пренебрегать.

В классической статистической механике доказывается так называемая теорема о равномерном распределении кинетической энергии по степеням свободы молекул, согласно которой на каждую степень свободы молекулы в состоянии теплового равновесия в среднем приходится энергия, равная (1/2)kT.

Для газов, состоящих из одноатомных молекул, (например, инертные газы) средняя кинетическая энергия, приходящаяся на один атом, определена соотношением (7), поскольку она соответствует лишь поступательному движению атомов, (3 степени свободы). В этом случае

Существенно, что для идеального газа одноатомных молекул внутренняя энергия зависит только от температуры и не зависит от объема.

Для линейных двухатомных молекул число степеней свободы равно пяти (на одну степень свободы меньше, чем для системы двух независимых атомов, поскольку в молекуле эти атомы связаны жесткой связью) Дополнительные две степени свободы описывают вращательное движение молекулы относительно двух взаимно-перпендикулярных осей. При этом

Если атомы в молекуле совершают еще и колебания, то, согласно классической теории, наличие колебательного движения вносит вклад в среднюю энергию молекулы, равный kT (по kT /2, приходящийся на кинетическую и потенциальную энергии колебаний. Тогда в случае молекулы, образованной из атомов,

где i = n пост + n вращ + 2n кол – полное число степеней свободы молекулы. При этом n пост = 3. Для линейной молекулы n вращ = 2, n кол = 3N – 5. Для всех других молекул n вращ = 3, n кол = 3N – 6.

Классическая теория, в основном, правильно описывает тепловые явления в газе в некоторых узких интервалах температур, однако температурная зависимость теплоемкости в целом, наблюдаемая в эксперименте, ведет себя далеко не так, как предсказывает классическая теория. Это несоответствие теории и эксперимента было понято только с появлением квантовой теории теплоемкости, основанной на представлении о дискретности вращательных и колебательных уровней молекул. При низких температурах наблюдается только поступательное движение молекул. С ростом температуры все большее число молекул вовлекается во вращательное движение. Если средняя тепловая энергия kT заметно превышает энергию первого вращательного уровня, в молекуле возбуждено уже много вращательных уровней. В этом случае дискретность уровней становится несущественной и теплоемкость равна своему классическому значению. Аналогичная ситуация имеет место и с возбуждением колебательных степеней свободы. Квантовая теория полностью объясняет характер температурной зависимости теплоемкости, ее непрерывный характер, отличающийся постепенным вовлечением в «игру» различных степеней свободы молекул.

Изотермические и адиабатические процессы в газе. Наряду с процессами изменения параметров газа, происходящими при постоянном объеме или при постоянном давлении, возможны изотермические (T = const, внутренняя энергия газа остается неизменной) и адиабатические (без отвода и подвода тепла к газу) процессы. В первом случае все подводимое к газу тепло расходуется на механическую работу, а изменение давления и объема для одного моля газа удовлетворяет условию pV = PT = const. В p -V координатах на плоскости соответствующие зависимости образуют семейство изотерм.

Для адиабатического процесса (dQ = 0) из (13) и (14) следует

C V dT + pdV = 0

Уравнение состояния идеального газа дает

dT = R –1 (pdV + Vdp ).

Используя (16), уравнение адиабатического процесса можно представить в дифференциальной форме

(17) gpdv + Vdp = 0, где g = С р /C V – отношение теплоемкостей при постоянном давлении и постоянном объеме, называемое адиабатической постоянной. Дифференциальному соотношению (17) при g = const соответствует уравнение адиабаты pV g = const

(18) TV g – 1 = const

Так как g > 1, то из (18) следует, что при адиабатическом сжатии газ нагревается, а при расширении – охлаждается. Это явление находит применение, например, в дизельных двигателях, где горючая смесь воспламеняется за счет адиабатического сжатия.

Скорость звука в газе.

Из гидрогазодинамики известно, что скорость звука в сплошной среде определяется соотношением

В первоначальных теориях (Ньютон) считалось, что давление и плотность связаны обычным уравнением состояния, т.е. p /r = соnst. Это соответствует предположению, что разности температур между сгущениями и разрежениями газа в звуковой волне мгновенно выравниваются, т.е. распространение звука является изотермическим процессом. В этом случае формула Ньютона для скорости звука принимает вид

Эта формула, однако, противоречила эксперименту. Лаплас первым понял, что колебания плотности и связанные с этим колебания температуры в звуковой волне происходят настолько быстро, что для таких процессов теплообмен несущественен и выравнивания температур не происходит. Это означает, что вместо уравнения изотермы надо пользоваться уравнением адиабаты. Тогда выражение для скорости звука принимает вид

Скорость звука в газе имеет тот же порядок величины, что и средняя тепловая или средне-квадратичная скорости молекул. Это понятно, поскольку возмущения в звуковой волне передаются молекулами, движущимися с тепловыми скоростями. Для молекулярного азота, например, g = 1,4 и скорость звука при T = 273К равна 337 м/с. Средняя тепловая скорость молекул азота бv с при тех же условиях равна 458 м/с.

Реальные газы.

С ростом давления и уменьшением температуры состояние газа начинает все больше отклоняться от идеальности. Эксперимент показал, например, что для азота N 2 при температуре T = 273K и давлении p =100 атм, ошибка в определении объема газа, если пользоваться уравнением состояния (3), может достигать 7%. Это связано с тем, что при таком давлении молекулы газа в среднем удалены друг от друга на расстояние, которое только вдвое больше их собственных размеров, а собственный объем молекул лишь в 20 раз меньше объема газа. При дальнейшем повышении давления становится все более существенным учет влияния на поведение газа как сил межмолекулярного взаимодействия, так и собственного объема молекул.

В нем учитывается как собственный объем молекул (постоянная b ), так и влияние сил притяжения между молекулами (постоянная a ). Из этого уравнения вытекает, в частности, существование наблюдаемой на опыте критической температуры и критического состояния. Критическое состояние характеризуется значением T k и соответствующими ему значениями p k и V k . При критической температуре T k исчезает различие между разными состояниями вещества. Выше этой температуры переход от жидкости к газу либо, наоборот, от газа к жидкости оказывается непрерывным.

Процессы переноса в газах.

Если в газе создается какая-либо неоднородность его параметров (например, разные температуры газа или разные концентрации компонентов газовой смеси в разных частях сосуда), то возникают отклонения состояния газа от равновесия, которые сопровождаются переносом энергии (теплопроводность ) или массы компонентов смеси (диффузия ) из одной части сосуда в другую. При различии в скоростях перемещения разных слоев газа (например, при течении газа в трубе) возникает поперечный перенос импульса (вязкость ). Все эти явления объединяются одним общим названием процессы переноса. При их описании особенно важным оказывается учет характера столкновений молекул в газе. Порядок величины соответствующих коэффициентов переноса (кинетических коэффициентов) и характер зависимости их от основных параметров дается элементарной кинетической теорией газа, основанной на модели молекул в виде твердых упругих шаров и на концепции средней длины свободного пробега молекул. Для переноса энергии в газе принимается

где q – плотность потока энергии (поток тепла), k v с l, k = 2,5(R /M )h,

rD = 1,2h

Более реалистические модели взаимодействия молекул в газе вносят изменения в характер зависимости коэффициентов переноса от температуры, что позволяет обеспечить лучшее совпадение теории с результатами экспериментальных измерений этих коэффициентов.

Владимир Жданов

МКТ поведение молекул в телах можно охарактеризовать средними значениями тех или иных величин, которые относятся не к отдельным молекулам, а ко всем молекулам в целом. T, V, P

МКТ МЕХАНИЧЕСКИЕ ВЕЛИЧИНЫ V T P величина, характеризующая внутреннее состояние тела (в механике ее нет)

МКТ МАКРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ Величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел (V, P, T) называют макроскопическими параметрами.

Температура Степень нагретости тел. холодное Т 1 теплое

Температура Почему термометр не показывает температуру тела сразу после того как он соприкоснулся с ним?

Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными Устанавливается с течением времени между телами, имеющими различную температуру.

Температура Важное свойство тепловых явлений Любое макроскопическое тело (или группа макроскопических тел) при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Температура Неизменные условия значит, что в системе 1 Не изменяются объем и давление 2 Отсутствует теплообмен 3 Температура системы остается постоянной

Температура Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии 1 Меняются скорости молекул при столкновениях 2 Изменяется положение молекул

Температура Система может находиться в различных состояниях. В любом состоянии температура имеет свое строго определенное значение. Другие физические величины могут иметь разные значения, которые не изменяются со временем.

Измерение температуры Можно использовать любую физическую величину, которая зависит от температуры. Чаще всего: V = V(T) Температурные шкалы Цельсия абсолютная (шкала Кельвина) Фаренгейта

Измерение температуры Температурные шкалы Шкала Цельсия = международная практическая шкала 0°С Температура таяния льда Реперные точки P 0 = 101325 Па 100°С Температура кипения воды Реперные точки – точки, на которых основывается измерительная шкала

Измерение температуры Температурные шкалы Абсолютная шкала (шкала Кельвина) Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. 1 К = 1 °С Уильям Томсон (лорд Кельвин) Единица температуры = 1 Кельвин = К

Измерение температуры Абсолютная температура = мера средней кинетической энергии движения молекул Θ = κT [Θ] = Дж [T] = К κ – постоянная Больцмана Устанавливает связь между температурой в энергетических единицах с температурой в кельвинах

Для того чтобы сравнить уравнение состояния идеального газа и основное уравнение молекулярно-кинетической теории , запишем их в наиболее совпадающем виде.

Из этих соотношений видно, что:

(1.48)

величина, которая называется постоянной Больцмана - коэффициент, позволяющий энергию движения молекул (конечно, среднюю) выражать в единицах температуры , а не только в джоулях , как до сих пор.

Как уже говорилось, «объяснить» в физике означает установить связь нового явления, в данном случае - теплового, с уже изученным - механическим движением. Это и есть объяснение тепловых явлений. Именно с целью находить такое объяснение в настоящее время разработана целая наука - статистическая физика . Слово «статистическая» означает, что объекты исследования - это явления, в которых участвует множество частиц со случайными (у каждой частицы) свойствами. Исследование таких объектов у человеческих множеств - народов, населения - предмет статистики.

Именно статистическая физика является основой химии как науки, а не как в поваренной книге - «слейте то и то, получится, что надо!» Почему получится? Ответ в свойствах (статистических свойствах) молекул.

Отметим, что, конечно, возможно использование найденных связей энергии движения молекул с температурой газа и в другом направлении для выявления свойства самого движения молекул, вообще свойств газа. Например, ясно, что внутри газа молекулы обладают энергией:

(1.50)

Эта энергия так и называется - внутренняя .Внутренняя энергия есть всегда! Даже когда тело покоится и не взаимодействует ни с какими другими телами, оно обладает внутренней энергией.

Если молекула - не «кругленький шарик», а представляет собой «гантель» (двухатомную молекулу), то кинетическая энергия представляет собой сумму энергии поступательного движения (только поступательное движение и рассматривалось фактически до сих пор) и вращательного движения (рис . 1.18 ).

Рис . 1.18. Вращение молекулы

Произвольное вращение можно представить себе как последовательное вращение сначала вокруг оси x , а затем вокруг осиz .

Запас энергии такого движения ничем не должен отличаться от запаса движения по прямой. Молекула «не знает» - летит она или крутится. Тогда во всех формулах необходимо вместо числа «три» ставить число «пять».

(1.51)

Такие газы, как азот, кислород, воздух и т. д., нужно рассматривать именно по последним формулам.

Вообще, если для строгой фиксации молекулы в пространстве нужно i чисел (говорят«i степеней свободы» ), то

(1.52)

Как говорят, «по пол kT на каждую степень свободы».

1.9. Растворенное вещество как идеальный газ

Представления об идеальном газе находят интересные приложения в объяснении осмотического давления , возникающего в растворе.

Пусть среди молекул растворителя находятся частицы какого-либо другого растворенного вещества. Как известно, частицы растворенного вещества стремятся занять весь доступный объем. Растворенное вещество расширяется совершенно так же, как расширяется газ ,чтобы занять предоставленный ему объем.

Подобно тому, как газ оказывает давление на стенки сосуда, растворенное вещество оказывает давление на ту границу, которая разделяет раствор от чистого растворителя . Такое дополнительное давление называетсяосмотическим давлением . Это давление можно наблюдать, если отделить раствор от чистого растворителяполунепроницаемой перегородкой , через которую легко проходит растворитель, но не проходит растворенное вещество (рис . 1.19 ).

Рис . 1.19. Возникновение осмотического давления в отсеке с растворенным веществом

Частицы растворенного вещества стремятся раздвинуть перегородку, и если перегородка мягкая, то она выпучивается. Если же перегородка жестко закреплена, то фактически смещается уровень жидкости, уровень раствора в отсеке с растворенным веществом повышается (см. рис . 1.19 ).

Подъем уровня раствора h будет продолжаться до тех пор, пока возникшее гидростатическое давлениеρgh (ρ- плотность раствора) не окажется равным осмотическому давлению. Имеется полное сходство между молекулами газа и молекулами растворенного вещества. И те, и другие находятся далеко друг от друга, и те, и другие движутся хаотически. Конечно, между молекулами растворенного вещества находится растворитель, а между молекулами газа ничего нет (вакуум), но это ведь не важно. Вакуум при выводе законов не использовался! Отсюда следует, чточастицы растворенного вещества в слабом растворе ведут себя так же, как молекулы идеального газа . Иначе говоря,осмотическое давление, оказываемое растворенным веществом ,равно давлению, которое производило бы это же вещество в газообразном состоянии в том же объеме и при той же температуре . Тогда получим, чтоосмотическое давление π пропорционально температуре и концентрации раствора (числу частицn в единице объема).

(1.53)

Этот закон называется законом Вант-Гоффа , формула (1.53 ) -формулой Вант-Гоффа .

Полное сходство закона Вант-Гоффа с уравнением Клапейрона–Менделеева для идеального газа очевидно.

Осмотическое давление, разумеется, не зависит от вида полупроницаемой перегородки или от рода растворителя. Любые растворы с одинаковой молярной концентрацией оказывают одинаковое осмотическое давление .

Сходство в поведении растворенного вещества и идеального газа обусловленно тем, что в разбавленном растворе частицы растворенного вещества практически не взаимодействуют между собой, как не взаимодействуют и молекулы идеального газа.

Величина осмотического давления часто довольно значительна. Например, если в литре раствора содержится 1 моль растворенного вещества, то по формуле Вант-Гоффа при комнатной температуре имеемπ ≈ 24 атм.

Если растворенное вещество при растворении разлагается на ионы (диссоциируется), то по формуле Вант-Гоффа

πV = NkT (1.54)

можно определить общее число N образовавшихся частиц - ионов обоих знаков и нейтральных (недиссоциированных) частиц. И, следовательно, можно узнать степень диссоциации вещества . Ионы могут быть сольватированы, но это обстоятельство не сказывается на справедливости формулы Вант-Гоффа.

Формулу Вант-Гоффа часто используют в химии для определения молекулярных масс белков и полимеров . Для этого к растворителю объемаV добавляютm грамм исследуемого вещества, измеряют давлениеπ. Из формулы

(1.55)

находят молекулярную массу.

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

Из $\left(2.2\right)\ $выразим $kT$:

Подставим (2.4) в (2.3):

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

Представляет собой ту энергию, которая определяется скоростью движения различных точек, принадлежащих этой системе. При этом следует различать энергию, которая характеризует поступательное движение и движение вращательное. При этом, средняя кинетическая энергия - это средняя разность между совокупной энергией всей системы и ее энергией покоя, то есть, в сущности, ее величина является средней величиной

Ее физическая величина определяется по формуле 3 / 2 кТ, в которой обозначены: Т - температура, k - константа Больцмана. Эта величина может служить своеобразным критерием для сравнения (эталоном) для энергий, заключенных в различных типах теплового движения. К примеру, средняя кинетическая энергия для молекул газа при исследовании поступательного движения, равна 17 (- 10) нДж при температуре газа 500 С. Как правило, наибольшей энергией при поступательном движении обладают электроны, а вот энергия нейтральных атомов и ионов и значительно меньше.

Данная величина, если мы рассматриваем любой раствор, газ или жидкость, находящуюся при данной температуре, имеет постоянное значение. Такое утверждение справедливо и для коллоидных растворов.

Несколько иначе обстоит дело с твердыми веществами. В этих веществах средняя кинетическая энергия любой частицы слишком мала для того, чтобы преодолеть силы молекулярного притяжения, а потому она может только совершать движение вокруг некой точки, которая условно фиксирует определенное равновесное положение частицы на протяжении длительного отрезка времени. Это свойство и позволяет твердому веществу быть достаточно устойчивым по форме и объему.

Если мы рассматриваем условия: поступательное движение и то здесь средняя кинетическая энергия не является величиной, зависимой от а потому определяется как значение, прямо пропорциональное значению

Все эти суждения мы привели с той целью, чтобы показать, что они справедливы для всех типов агрегатных состояний вещества - в любом из них температура выступает в качестве основной характеристики, отражающей динамику и интенсивность теплового движения элементов. А в этом состоит сущность молекулярно-кинетической теории и содержание понятия теплового равновесия.

Как известно, если два физических тела приходят во взаимодействие друг с другом, то между ними возникает процесс теплообмена. Если же тело представляет собой замкнутую систему, то есть не взаимодействует ни с какими телами, то его теплообменный процесс будет длиться столько времени, сколько потребуется для выравнивания температур этого тела и окружающей среды. Такое состояние называют термодинамическим равновесием. Этот вывод многократно был подтвержден результатами экспериментов. Чтобы определить среднюю кинетическую энергию, следует обратиться к характеристикам температуры данного тела и его теплообменных свойств.

Важно также учитывать, что микропроцессы внутри тел не заканчиваются и тогда, когда тело вступает в термодинамическое равновесие. В этом состоянии внутри тел происходит перемещение молекул, изменение их скоростей, удары и столкновения. Поэтому выполняется только одно из нескольких наших утверждений - объем тела, давление (если речь идет о газе), могут различаться, но вот температура все равно будет оставаться величиной постоянной. Этим еще раз подтверждается утверждение, что средняя кинетическая энергия теплового движения в определяется исключительно показателем температуры.

Эту закономерность установил в ходе опытов Ж. Шарль в 1787 году. Проводя опыты, он заметил, что при нагреве тел (газов) на одинаковую величину, давление их меняется в соответствии с прямо пропорциональным законом. Это наблюдение дало возможность создать много полезных приборов и вещей, в частности - газовый термометр.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные