Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

При сжатии окружающего нас воздуха концентрация в нем паров и твердых частиц значительно увеличивается. Процесс сжатия заставляет пар конденсироваться в виде капель, а затем смешиваться с твердыми частицами с высокой концентрацией. Получается абразивная смесь, которая во многих случаях также имеет кислотную реакцию. Без оборудования для получения качественного воздуха большая часть этой коррозийной смеси попадет в сеть сжатого воздуха.

Инвестиции в эффективное оборудование Ceccato для обработки воздуха приносят твердый доход: это оборудование радикально снижает уровень загрязнения воздуха, предотвращая коррозию в трубопроводах, повреждения пневматического оборудования и порчу продукции.

Почему нужен качественный воздух?

Некачественный воздух стоит слишком дорого

Поступая в инструменты, машины и измерительные приборы, сжатый воздух низкого качества чаще становится причиной аварий, что требует работ по ремонту и замене оборудования. Кроме расходов на устранение последствий повреждений, простои, возникшие в результате ремонта, и задержки выпуска продукции зачастую обходятся дороже любого ремонта.

Угроза безукоризненной репутации

Там, где сжатый воздух соприкасается с продукцией, загрязнение может существенно влиять на стабильность процесса, процент брака и конечное качество продукции. Кроме затрат нa исправление этой ситyации, нельзя недооценивать и потенциальный ущерб для репутации Вашей продукции.

Деньги исчезают в воздухе

При расчете потенциальных затрат на производство сжатого воздуха низкого качества часто забывают о трубопроводах, подающих сжатый воздух. Агрессивный конденсат вызывает коррозию, которая ведет к утечкам воздуха и дорогостоящим потерям энергии. Место утечки размером 3 мм чревато потерей приблизительно 3,7 кВт. энергии. За год это может добавить к расходам до 1800 евро.

Постоянное воздействие на окружающую среду

Потери энергии, вызванные утечками и небезопасным удалением необработанного конденсата, будут вредно воздействовать на окружающую среду. He говоря уже о строгом законодательстве, которое налагает крупные штрафы за несоблюдение требований законов, нужно учитывать, что любые потери энергии отрицательно влияют на общий итог вашей деятельности. Забота об окружающей среде может быть выгодным делом!

Оборудование для очистки и осушки сжатого воздуха - осушители Ceccato

Мы будем рады помочь Вам решить проблему очистки и осушки сжатого воздуха. Полный спектр оборудования CECCATO (и других ведущих производителей) позволит сделать это максимально эффективно и качественно. Вы легко сможете получить сжатый воздух с требуемыми параметрами.

Типовые решения для очистки и осушки сжатого воздуха


Условные обозначения

Сколько воды содержится в пневмосети?

1 кубический метр атмосферного воздуха при 25°С и 70% влажности содержит 16 грамм воды. Соответственно со сжатым воздухом, подаваемым в пневмосеть компрессором с производительностью 54 м3/мин (FAD) при давлении 7 бар, будет попадать 52 л воды в час. В случае, если температура окружающего воздуха будет 40°C, поступление воды увеличится до 115 л воды в час. Однако большая часть влаги может быть удалена из сжатого воздуха в случае применения соответствующего оборудования.


Для чего необходим осушитель сжатoгo воздуха, если он уже прошел через доохладитель?

В самом деле, температура сжатого воздуха на выходе из доохладителя на 10…15°С выше температуры окружающего воздуха. Однако влажность сжатого воздуха составляет 100% и даже незначительное понижение его температуры приведет к выпадению конденсата. Температура, при которой начинает конденсироваться влага, называется точкой росы (PDP). С целью недопущения конденсации влаги в трубопроводах сжатый воздух должен быть охлажден до температуры ниже температуры окружающей среды. Другими словами, точка росы должна быть ниже температуры окружающей среды. В большинстве случаев точка росы сжатого воздуха может быть снижена средством осушителя рефрижераторного типа. Однако для получения более низкой точки росы необходимо применение адсорбционного осушителя.


Информация из официального каталога Атлас Копко

Хороший вопрос.
У Гулиа хорошая книга "В поисках энергетической капсулы" - в основном про маховики, но и про другие способы накопления тоже.
Цитата оттуда:
Чтобы узнать, сколько энергии накоплено в газе, нужно умножить его давление на объем. Кубометр воздуха весит чуть больше килограмма. Допустим, мы сожмем воздух в 500 раз, его давление будет - 500 атмосфер, или около 50 мегапаскалей (МПа). Тогда весь кубометр уместится в сосуде емкостью два литра. Если предположить, что баллон весит примерно столько же, сколько воздух (а это должен быть очень хороший, крепкий баллон!), значит, на каждый килограмм баллона придется только около литра сжатого воздуха. Но этот литр, одна тысячная кубометра, умноженная на 50 мегапаскалей давления, даст в результате 50 килоджоулей энергии!
Совсем неплохой показатель - 50 килоджоулей на килограмм массы аккумулятора! Плотность энергии почти вдвое выше, чем у лучшей резины. И долговечность такого аккумулятора очень высока - воздух не резина, он не изнашивается. Масса воздушного аккумулятора для автомобиля будет всего 500 килограммов. Его уже вполне можно установить на автомобиле в качестве двигателя.
...
Еще в прошлом веке во французском городе Нанте ходил трамвай, работавший от баллонов со сжатым воздухом. Десяти баллонов воздуха, сжатого всего до 3 мегапаскалей, при общем объеме 2800 литров, трамваю хватало, чтобы пройти на накопленной в воздухе энергии путь в 10...12 километров. Все равно я решил построить модель такого воздуховоза, чтобы самому убедиться в преимуществах и недостатках воздушного аккумулятора. Как мне представлялось, модель автомобиля-воздуховоза сделать несложно. По моим расчетам, для этого нужен был углекислотный огнетушитель, например автомобильный, который выбрасывает струю газа, а не пены, и тяговый пневмодвигатель, скажем от воздушной дрели или гайковерта. Но, увы, первое же испытание воздуховоза разочаровало меня. Я направил сжатый углекислый газ из огнетушителя в пневмодвигатель, а тот, чуть-чуть поработав... замерз. Да, да, покрылся инеем и остановился!

В принципе любой сжатый газ при резком расширении сильно охлаждается. Когда я, ничего не подозревая, крутанул вентиль баллона сразу до отказа и газ под большим давлением вырвался из отверстия, расширение оказалось столь интенсивным, что газ стал превращаться в снег. Не обычный, а утлекислотный, с очень низкой температурой. Такой снег, только спрессованный, часто называют "сухой лед", потому что он переходит в газ, минуя жидкую фазу. Мне не раз приходилось видеть "сухой лед", когда я покупал мороженое. Но главное - охлаждение значительно снизило запас энергии в сжатом газе. Ведь давление газа при охлаждении стремительно падает, а значит, уменьшается и количество выделяемой энергии. Это и было основной причиной остановки пневмодвигателя.

Можно, конечно, нагревать охлажденный газ, чтобы вернуть ему прежнюю температуру. Но ведь нагрев - затрата энергии. Газ когда-то сжимали, закачивая в баллон. Тут-то он и нагревался: газы, как известно, при сжатии нагреваются. Вот если бы горячий газ сразу же пустить в работу, то он охладился бы всего до исходной температуры. А при хранении баллон с горячим газом в конце концов остывает, принимает температуру окружающего воздуха. Отсюда и столь сильное охлаждение газа при выходе его из баллона, при расширении, отсюда и "сухой лед".

Области применения сжатого воздуха и энергоемкость его производства

Самым большим среди отраслей потребителем воздуха является черная металлургия . В ней сосредоточены наиболее крупные технологические блоки, использующие сжатый воздух: доменные печи, конверторы, мартеновские печи, прокатные станы, вагранки. В черной металлургии сосредоточены и самые крупные компрессорные агрегаты. Такие ТКУ, как К-5000 и К-7000 созданы специально для воздухоснабжения доменных печей.

В этой отрасли наибольший процент турбокомпрессоров из общего количества компрессорных машин, а доля поршневых машин составляет примерно 20 % и имеется тенденция к ее уменьшению. Доля энергозатрат на производство сжатого воздуха здесь составляет 5-7 % от общего расхода энергии на производство основного продукта.

Сопоставимой по масштабам потребления воздуха является цветная металлургия . Здесь нет таких крупных единичных потребителей воздуха, как доменные печи, но требуется большое разнообразие нагнетателей с различными давлениями нагнетания. Доля энергопотребления на сжатие воздуха в отрасли колеблется от 8-10 % до 60 % в шахтных выработках и рудниках.

Крупным потребителем сжатого воздуха является машиностроение . Большое разнообразие мелких потребителей, индивидуализация режимов их работы определяют сложные графики воздухопотребления со значительной суточной и недельной неравномерностью. На предприятиях этой отрасли расход электроэнергии на привод компрессоров достигает 20-25 % общего энергопотребления.

Потребление сжатого воздуха в химической промышленности отличается большим разнообразием требуемых параметров, качества, масштабов и режимов подачи. Здесь в равной степени находят применение поршневые, винтовые и турбокомпрессорные установки. Воздухоснабжение в этой отрасли может осуществляться как от центральной станции, так и от отдельных установок, входящих в состав технологического оборудования.



Очень крупными потребителями сжатого воздуха являются горнодобывающая и угольная промышленность. Доля энергопотребления систем воздухоснабжения в этой отрасли достигает примерно 25 % общего расхода энергии в ней.

В классификации отраслей промышленности особое место занимают воздухоразделительные установки. Они могут быть как самостоятельными предприятиями, так и подотраслью металлургии, химической промышленности и т.п. Здесь на сжатие воздуха тратится от 70 до 90 % общего энергопотребления.

Классификация потребителей

Практически на любом предприятии для тех или иных целей нужен сжатый воздух. Он используется:

а) для привода различных пневмомеханизмов, инструментов, пневмотранспорта и т.п., т.е. для получения механической энергии;

б) для получения газов, из которых состоит воздух (азот, кислород, аргон, и др. инертные газы);

в) для технологических нужд – при проведении реакций окисления, горении, сушке и т.п.;

г) для пневматических систем измерения, контроля и регулирования на взрывоопасных производствах (химическая промышленность, горнодобывающая и др.).

Воздух для технологических целей не является энергоносителем. Он является исходным продуктом (или компонентом) для получения новых веществ (продуктов). Потребителями сжатого воздуха как энергоносителя (пневмоприемниками ) являются механизмы и устройства, использующие воздух для различных производственных операций и технологических процессов.

По способу преобразования энергии сжатого воздуха все пневмопотребители можно разбить на три группы.

1-я группа . Устройства для преобразования потенциальной энергии сжатого воздуха в механическую работу:

а) с продольно-возвратным движением рабочего органа. Это молоты, отбойные и клепальные молотки, трамбовки вибраторы, подъемники, толкатели, долбежные машины и т.п.;

б) с вращательным движением рабочего органа. Это устройства с турбинным или поршневым приводом: сверлильные, шлифовальные (фортуны), отрезные полировальные, винтозавертывающие и другие машины.

2-я группа . Устройства для преобразования потенциальной энергии в кинетическую. Это различные обдувные устройства (песко- и дробеструйные установки), эжекторы, форсунки, краскораспылители, пульверизаторы, пневмотранспортные установки и др.

3-я группа . Устройства, использующие сжатый воздух без преобразования его энергии. Это различные пневматические приспособления: поддержки, патроны, зажимы, устройства регулирования и автоматизации, мерные устройства и т.д.

По назначению и способу применения различают две основные группы пневмоприемников:

а) пневмоинструменты ;

б) пневмооборудование .

К пневмоинструментам относятся устройства, предназначенные для механизации производственных процессов (замена ручного труда). Это переносной агрегат, приводимый в действие пневмодвигателем. Пневмоинструменты отличаются кратковременными режимами работы.

Пневмооборудование – это, как правило, стационарные установки с длительными режимами работы.

Параметры потребляемого сжатого воздуха

Давление.

Анализ паспортных данных различных промышленных пневмоприемников показывает, что необходимое давление сжатого воздуха перед ними не превышает 0,7-0,8 МПа. В большинстве случаев оно требуется еще меньше – 0,4-0,7 МПа.

Понижение давления (ниже паспортного) ведет к понижению мощности и производительности пневмомеханизма. При этом из-за нерасчетных режимов работы, как правило, возрастают удельные расходы воздуха.

Повышение давления воздуха (сверх необходимого) влечет увеличение утечек, которые и так часто выше допустимых. Так, вместо обычных потерь в 20-30 %, при превышении давления они доходят до 50-60 % от общего расхода сжатого воздуха.

Если пневмосеть находится в нормальном состоянии, то потери давления из-за гидравлического сопротивления не превышают 0,05 МПа, даже для самых удаленных точек (норма 0,01-0,03 МПа). Таким образом, в системах, не оснащенных системой осушки воздуха, давление развиваемое компрессором не должно превышать требуемое пневмоприемником более чем на 0,05 МПа. Если такого давления недостаточно, это означает, что имеется:

Чрезмерный износ оборудования;

Чрезмерные потери давления в распределительных устройствах, шлангах, местных сопротивлениях;

Чрезмерные утечки (в стыках, шлангах, запорных устройствах пневмомеханизмов и т.п.).

Выбор компрессоров для КС с завышенными развиваемыми давлениями приводит:

Для поршневых компрессоров (ПК) – к недоиспользованию мощности;

Для центробежных компрессоров (ЦБК) – к снижению экономичности, так как компрессор в этом случае работает в нерасчетном режиме с более низкими значениями КПД.

Температура воздуха.

Температура воздуха на входе в пневмоприемник оказывает сильное влияние на его потребление. Работоспособность 1 кг сжатого воздуха при его адиабатном расширении в пневмомеханизме от давления P 1 до давления P 2 определяется выражением, кДж/кг:

где – изобарная теплоемкость воздуха, кДж/(кг×К); Т 1 – температура сжатого воздуха на входе в механизм, К; Р 1 , Р 2 – давления воздуха на входе и выходе пневмомеханизма соответственно, МПа.

Таким образом, за счет подогрева сжатого воздуха перед его использованием можно снизить его потребление при неизменном количестве совершаемой работы.

На практике в большинстве случаев воздух в концевом воздухоохладителе КУ охлаждается до температуры 40-45 °С, что недостаточно для конденсации влаги и масла и в то же время этим существенно снижается его работоспособность. Это указывает на необходимость рассмотрения целесообразности использования концевого воздухоохладителя в каждом конкретном случае.

Как показывают расчеты, температуру сжатого воздуха можно доводить до 60-70 °С, при этом температура ручного инструмента не превысит значений 35-40 °С, а экономия электроэнергии при этом составит 10-15 % по сравнению с исходным вариантом.

Вопрос о выборе оптимального влагосодержания должен решаться на основании технико-экономического обоснования. От правильности решения этого вопроса зависит экономичность применения сжатого воздуха.

Если воздух используется для химических реакций, для транспортирования гигроскопических веществ и т.п., то его влагосодержание должно удовлетворять специфическим требованиям таких процессов, оговариваемых в технологическом регламенте. Так, например, в автомобилестроении в соответствии с ГОСТ 9.010-80 «Воздух, сжатый для распыления лакокрасочных материалов» влагосодержание воздуха с давлением 0,6 МПа ограничено значением 1,6 г/м 3 .

К сжатому воздуху для питания пневматических систем и устройств, работающих при давлении до 2,5 МПа, требования к влагосодержанию оговариваются в ГОСТ 17433-80 «Сжатый воздух. Классы загрязнения». В пересчете на условия t в =20°С и P в =0,9 МПа устанавливается следующее влагосодержание: для классов загрязненности 0 и 1 d в £0,156 г/кг, а для классов 3, 5, 7, 9, 11 и 13 d в £0,9 г/кг. Для остальных классов влагосодержание (точка росы) не регламентируется.

При применении сжатого воздуха в машиностроительной, металлургической и горнодобывающей промышленности важно, чтобы отсутствовала конденсация водяного пара во время транспортировки сжатого воздуха от компрессорной станции до потребляющего оборудования. То есть необходимо, чтобы возможная минимальная температура воздуха в пневмосети всегда была выше точки росы осушенного воздуха.

Считается экономически приемлемой точка росы сжатого воздуха 2-3°С (под рабочим давлением). Именно такая степень осушки принята повсеместно на большинстве предприятий горнодобывающей промышленности, машиностроения и др.

Загрязнение воздуха.

Опыт эксплуатации пневмооборудования, инструмента, пневматических приводов и пневматических систем управления показал, что повышение надежности и долговечности их работы невозможно без качественной подготовки сжимаемого воздуха, очистки его от загрязнений.

Загрязнения, содержащиеся в воздухе, могут оказывать физическое и химическое воздействие на пневматические устройства в виде:

1) закупорки отверстий и сопел влагой, льдом и механическими частицами;

2) смывания смазки, коррозии металлических и разрушения резиновых деталей;

3) повреждения прокладок и рабочих поверхностей клапанов, мембран, золотников;

4) износы и заклинивания трущихся поверхностей.

Идеальным случаем является полное удаление загрязнений сжатого воздуха, что в большинстве случаев экономически нецелесообразно.

Требования к очистке воздуха зависят от эксплуатационных условий. Необходимая степень очистки определяется опытным путем, обобщается и гостируется.

Контрольные вопросы

1. Какие отрасли промышленности являются наиболее крупными потребителями сжатого воздуха?

2. Для каких целей используется сжатый воздух?

3. Какими достоинствами обладает сжатый воздух как энергоноситель?

4. Какие параметры характеризуют сжатый воздух, используемый в качестве энергоносителя?

5. К чему приводит превышение требуемых значений давления воздуха в системе?

6. К чему приводит заниженное давление воздуха в коллекторе потребителя?

7. Какие последствия могут возникнуть при использовании воздуха с повышенной влажностью?

8. Какие виды воздействий на элементы систем воздухоснабжения оказывают загрязнения сжатого воздуха?


РЕЖИМЫ ВОЗДУХОПОТРЕБЛЕНИЯ

Казалось бы, в газовой индустрии нет ничего проще сжатого воздуха. Даже чтобы дать ему определение, не нужно напрягаться, вспоминая студенческие годы. Очевидно: это просто воздух, находящийся в условиях повышенного давления.

Однако каждый ли сможет в двух словах ответить, для чего нужен сжатый воздух?

Разумеется, областей применения можно назвать множество. И это неудивительно, ведь работа сжатого воздуха встречается практически повсюду, достаточно увидеть на улице отбойный молоток. Да и статистика утверждает, что в странах Европы около 10 % электроэнергии расходуется промышленностью на производство сжатого воздуха. Это соответствует 80 тераватт-часов в год. Таковы, во всяком случае, данные «Википедии».

Все это верно. Но это все же не ответ на вопрос «для чего?».

Между тем он, такой простой ответ, существует. Сжатый воздух в огромном количестве случаев служит человечеству для того, чтобы передавать механическую энергию. А еще, чтобы служить ее хранилищем. Ведь запасти, допустим, электричество не так-то просто. А механическую энергию сохранить относительно нетрудно. Достаточно лишь хорошенько заполнить газовый баллон.

Таким образом, выражаясь словами все той же «Википедии»: «По своей роли в экономике сжатый воздух находится в одном ряду с электроэнергией, природным газом и водой. Но единица энергии, запасенная в сжатом воздухе, стоит дороже, чем энергия, запасенная в любом из трех указанных ресурсов».

Примеров такого «энерго-механического» применения очень и очень много. Так, сжатый воздух используется для работы любого пневмопривода (т.е. все в том же отбойном молотке). Также он необходим для различных транспортных систем: и тех, что движутся сами, и для механизмов, перемещающих при помощи воздуха, скажем, сыпучие грузы.

Можно назвать и гораздо более экзотические примеры использования сжатого воздуха. Так, он применяется для морских и речных сейсмических исследований: в качестве средства разведки полезных ископаемых. Для этого необходим пневмоизлучатель, то есть генератор колебаний, создаваемых за счет его энергии. Спектр излучаемого сигнала зависит, в частности, от режима истечения сжатого воздуха. А по характеру волн, отраженных или преломленных земной корой, судят о ее геологических свойствах.

Казалось бы, совершенно новая область! Но если вдуматься, то же самое – передача энергии, просто в другой среде.

Существуют, тем не менее, и другие области применения сжатого воздуха. Самый очевидный из них – использование для дыхания. Например, он абсолютно необходим при дайвинге, то есть подводном плавании с аквалангом.

Важный вопрос, о котором обязательно стоит поговорить в связи со сжатым воздухом, – это его качество.

Если вдуматься, вопрос абсолютно логичный. Люди заботятся о качестве того воздуха, которым им приходится дышать. Вполне естественно предположить, что машинам и механизмам чистый воздух тоже «нравится» больше.

Между тем загрязнители в сжатый воздух, естественно, попадают. Во-первых, далеко не всегда у компрессоров, которые его «делают», есть система подготовки на входе. Соответственно, «в сырье» содержатся влага и механические примеси: пыль, различные частицы и т.д.

Мало того, компрессор, как правило, тоже не стерилен. Во многих таких агрегатах в больших количествах присутствует, например, масло. Соответственно, его частицы тоже попадают в сжатый воздух.

Это далеко не всегда безобидный процесс. Влага, содержащаяся в сжатом воздухе, способна серьезно вредить тем механизмам, в которых он затем используется. Самый простой пример такого процесса – это обычная коррозия.

То же относится и к механическим частицам. Попадая в трущиеся части механизмов, они сильно увеличивают их износ и ухудшают эксплуатационные характеристики.

Да и масло, проникшее в сжатый воздух, не несет в себе ничего хорошего. Бытующее мнение, что благодаря этому механизмы нужно меньше смазывать, по словам многих специалистов, ошибочно. Так как данное масло зачастую подвергается воздействию высоких температур и других неблагоприятных факторов, в нем появляются продукты разложения. Так что рассматривать его как смазочное вещество уже нельзя.

К тому же масло взаимодействует с влагой, попадающей из того же сжатого воздуха. В итоге оно само начинает способствовать коррозии. Мало того, образуются твердые осадки, вредные для любого механизма.

Словом, низкое качество (недостаточная чистота) сжатого воздуха способно повысить износ агрегатов, где он используется, и потребовать более частых его остановок для прочистки. В итоге все это серьезно увеличивает эксплуатационные издержки использующего его предприятия.

Именно требованиями к чистоте получаемого сжатого воздуха во многих случаях определяется выбор компрессора, который используется для его изготовления. Однако есть и другие факторы, влияющие на этот процесс. Важно, в каких условиях и в какой отрасли будет работать компрессор.

Существует великое множество видов различных компрессоров.

Разобрать все их в рамках одной статьи почти невозможно. Поэтому мы остановимся лишь на основных.

Наиболее интуитивно понятную схему представляет собой поршневой компрессор. Вращающийся двигатель (например, электрический), благодаря стандартной системе механизмов (скажем, через шатуны), генерирует возвратно-поступательное движение поршней. По существу, это «двигатель внутреннего сгорания наоборот». В цилиндрах воздух сжимается, а затем «изымается» через специальные клапаны.

Поршневые компрессоры бывают как стационарными, так и передвижными. Сфера их применения огромна. Так, они часто используются на пневмонагнетателях в процессе приготовления и подачи цементно-песчаных растворов и бетона. А в целом подобные агрегаты, как правило, предназначены для получения сжатого воздуха для технических нужд в различных отраслях хозяйственной деятельности.

Однако такие компрессоры малопригодны для работ при производстве газа (в частности, для получения азота и кислорода). Во-первых, они не очень подходят для длительной, а тем более непрерывной работы. Во-вторых, их износостойкость также, что называется, оставляет желать лучшего. И в-третьих, они вынуждены использовать очень много масла. Следствием становится низкое качество получаемого сжатого воздуха.

Поэтому для работы в составе кислородных и азотных линий часто выбирают так называемые винтовые компрессоры. В подобных устройствах воздух попадает в камеру сжатия, объем которой при вращении роторов постепенно уменьшается.

Такие агрегаты также различаются в зависимости от использования в них масла.

Маслозаполненный винтовой компрессор имеет довольно высокий КПД и эксплуатационные характеристики. Но поскольку проблема загрязнения продукции маслом в них остается, нередко они оснащаются дополнительными устройствами, обеспечивающими на выходе нужную чистоту. Для этого используются фильтры сжатого воздуха, рефрижераторы (обычно они используются для осушения, но некоторые устройства вместе с влагой удаляют и часть масла) и даже угольные адсорберы. По мнению некоторых специалистов, этого достаточно для решения довольно широкого круга задач.

В воздухе, вырабатываемом безмасляным винтовым компрессором, масло отсутствует. Поэтому в некоторых областях такое решение находит достойное применение. Однако за это приходится платить. Безмасляные компрессоры значительно сложнее и приблизительно вдвое дороже. К тому же они гораздо менее неприхотливы.

Существует и множество других видов компрессоров. Например, мембранные – это компрессоры, предназначенные для сжатия различных сухих газов без загрязнения их маслом и продуктами износа трущихся частей. Такие агрегаты применяются там, где имеются особые требования к чистоте продукции: например, в научных исследованиях, но также и на некоторых предприятиях.

Отдельно необходимо сказать несколько слов о передвижных компрессорах.

Они применяются в невероятно широком спектре отраслей. Помимо уже упомянутых пневмонагнетателей и пневмоинструментов, они необходимы, например, для установок бестраншейной прокладки кабелей и трубопроводов, а также иных строительных устройств и механизмов.

Другим интересным примером являются передвижные компрессорные станции, используемые на аэродромах. Там они нужны для заправки сжатым воздухом систем самолетов. Аналогичные компрессоры, кстати, применяются для других специальных целей: очистки трубопроводов, заправки баллонов дыхательных аппаратов в пожарных частях, наполнения сжатым воздухом кабелей связи и т.д.

Словом, сжатый воздух совсем не так прост, как кажется. И выбор технологий часто определяется именно тем, каким он должен получиться.

До сих пор мы рассматривали применение сжатого воздуха для совершения механической работы, получения и переработки информации.

В металлургии сжатый воздух выполняет свою самую древнюю функцию участвует в технологических процессах в качестве реагента, содержащегокислород. Главная функция сжатого воздуха в металлургии - дутье, т.е. подача сжатого воздуха в самые различные производственные агрегаты - домны, мартены, конвертеры. Дутье является необходимым фактором технологических процессов в этих агрегатах, так как без воздуха, а точнее без кислорода, нет горения.

Первый из этих процессов - обогащение руды, т.е. повышение содержания железа или другого металла и понижение содержания вредных примесей. Один из способов обогащения - флотация. Ее осуществляют в специальных ваннах, куда подают тонко измельченную руду вместе с водой - пульпу. Через эту пульпу продувают сжатый воздух. Пенная флотация основана на том, что одни минералы не смачиваются водой, прилипают к пузырькам воздуха и поднимаются, а другие минералы смачиваются водой и остаются в пульпе. В результате частицы металла всплывают на поверхность, а пустая порода оседает на дне ванны.

В пневматических флотационных машинах сжатый воздух подается по трубам под небольшим давлением. Флотацию широко используют для обогащения руд цветных металлов, где содержание основного компонента низкое. В железных рудах содержание основного компонента гораздо выше, но и их приходится обогащать. В черной металлургии флотацию применяют для обогащения марганцевых руд и железорудных концентратов, содержащих 70-72 % железа.

Следующий металлургический процесс - агломерация т.е. окомкование мелких и пылеватых руд. Для этого пылеватую руду спекают на агломерационной машине. Агломерационная машина представляет собой металлический конвейер, каждое звено которого выполнено в виде решетки. На этот конвейер из бункера подают увлажненную мелкую руду, смешанную с небольшим количеством топлива - кокса. Конвейер проходит над мощными вентиляторами, которые просасывают воздух сквозь слой смеси руды с коксом. Кокс начинает гореть, руда разогревается до высокой температуры и из мелкой превращается в прочную пористую массу - агломерат. Домна, в которой используют агломерат, дает больше чугуна, чем домна без его применения.

Железо в руде находится в форме окислов. Целью доменного процесса является освобождение железа от связанного с ним кислорода - восстановление. Загрузочный аппарат засыпает в доменную печь в определенной пропорции рудные материалы, топливо (кокс) и флюсы. Загружают отдельные виды сырья слоями, чтобы увеличить поверхность их соприкосновения, на которой происходят химические реакции.


В нижнюю часть домны, в ее горн, через специальные отверстия - фурмы вдувают горячий воздух. Кислород, содержащийся в воздухе, взаимодействует с углеродом кокса, в результате чего образуется углекислый газ СО 2 . Он поднимается выше, проходит через кокс, вступает с ним в реакцию, продуктом которой является окись углерода СО. Поднимаясь выше, она отнимает у окислов железа содержащихся в руде, кислород и связывает его. Освободившееся железо вступает во взаимодействие с углеродом образуется сплав - чугун.

Для подачи дутья чаще всего используют центробежные воздуходувные машины с приводом от паровой турбины. На одну тонну чугуна расходуют 2500 - 3500 м воздуха, т.е. производительность воздуходувной машины составляет до 8000 м 3 /мин. Такое количество холодного воздуха охлаждало бы доменную печь и увеличивало бы расход топлива, поэтому перед подачей в домну воздух предварительно нагревают до 1100 - 1300 °С в воздухонагревателях - кауперах. Их располагают рядом с доменной печью.

Кауперы представляют собой закрытые металлическим кожухом башни высотой до 50 м и диаметром до 9 м. Внутри они разделены на две части: камеру сгорания и часть, заполненную насадкой из огнеупорного материала. В камере сгорания сжигают топливо. Продукты сгорания, проходя через насадку, отдают ей свое тепло и раскаляют ее. Когда насадка нагревается до высокой температуры, подачу топлива прекращают. После этого мощными воздуходувными машинами нагнетают в воздухонагреватель холодный воздух. Проходя через раскаленную насадку, воздух нагревается, и его направляют к кольцевому воздухопроводу, опоясывающему домну - фурменному поясу. Отсюда через фурмы воздух под давлением 0,35 - 0,4 МПа равномерно вдувается в домну.

Для нагрева насадки требуется определенное время. Поэтому для бесперебойного снабжения домны горячим дутьем возле нее устанавливают несколько воздухонагревателей. Одни из них нагреваются, а другие нагревают воздух. Заметим, что в воздухе содержится 1/5 кислорода и 4/5 азота, причем азот ни в каких химических реакциях не участвует, однако на его нагрев тратится тепло. Гораздо выгоднее осуществлять дутье в доменном процессе воздухом, обогащенным кислородом, или чистым кислородом.

Применение кислородного дутья упрощает доменный процесс, позволяет уменьшить его расход на единицу топлива. Это дает возможность уменьшить размеры и мощность воздуходувных установок, воздухонагревателей и трубопроводов, высоту доменных печей.

На целесообразность обогащения дутья кислородом указывал еще Д.И. Менделеев. Однако практическая реализация кислородного дутья стала возможной лишь в 30 - 40-х годах XX в., когда были созданы достаточно мощные машины для разделения воздуха на кислород и азот в больших количествах. Заслуга создания отечественной кислородной промышленности принадлежит академику П.Л. Капице.

Не меньшую роль играет сжатый воздух при выплавке стали. Если процесс выплавки чугуна - восстановительный, то выплавка стали из чугуна и металлического лома - окислительный процесс. При выплавке стали удаляются примеси - углерод, кремний, марганец, которые окисляются. А для окисления нужен кислород.

Бессемером и Томасом был разработан быстрый и эффективный способ «варки» стали - конвертерный. Он заключается в том, что расплавленный жидкий чугун продувают сжатым воздухом, и содержащийся в нем кислород соединяется с углеродом, кремнием и марганцем.

Конвертер представляет собой стальной сосуд грушевидной формы, сужающийся кверху. Изнутри он выложен огнеупорным кирпичом. В днище конвертера имеются отверстия, через которые подают сжатый воздух под большим давлением. В конвертер заливают расплавленный чугун, а затем продувают его снизу сжатым воздухом. В результате углерод быстро выгорает, и сплав почти полностью обезуглероживается - образуется сталь. При соединении кислорода с кремнием и марганцем выделяется тепло. Это избавляет от необходимости тратить топливо в конвертерном процессе.

Д.И. Менделеев называл бессемеровские конвертеры печами без топлива. Однако конвертерный способ при использовании продувки чугуна сжатым воздухом имел и ряд недостатков. При продувке металл насыщался азотом, содержащимся в воздухе. Это повышало хрупкость стали и ее склонность к старению. Кислород воздуха не затрагивал вредные примеси - серу и фосфор. При бессемеровском способе можно было применять не всякий чугун, а только содержащий кремний и марганец, которые при окислении выделяют большое количество тепла. Поэтому железный лом конвертерным способом перерабатывать было нельзя, а можно было использовать только жидкий чугун. Гораздо рациональнее использовать для продувки в конвертерном процессе не сжатый воздух, а чистый кислород. Однако во времена Бессемера его еще не научились получать из воздуха в больших количествах.

По всем этим причинам конвертерный способ выплавки стали надолго уступил место мартеновскому способу, который позволяет перерабатывать не только чугун, но и железный лом.

Топливом для мартеновской печи служит мазут или смесь коксового газа, получаемого в коксовых батареях, и доменно-колосникового газа. И эта смесь, и воздух перед подачей в мартен нагреваются в регенераторах. Отличие регенератора от воздухонагревателя доменной печи заключается в том, что для нагрева воздуха в воздухонагревателе сжигается топливо, а в регенераторе используется тепло, выносимое из мартеновской печи раскаленными продуктами сгорания топлива, т.е. осуществляется регенерация тепла.

Регенератор представляет собой большую камеру, выполненную из огнеупорного материала и заполненную ячейками из огнеупорного кирпича - насадкой. У каждой мартеновской печи две пары регенераторов для нагрева газа и воздуха. Пока одна нагретая пара отдает тепло холодным газу и воздуху и постепенно остывает, насадка другой пары регенераторов, через которые пропускаются уходящие из мартеновской печи продукты сгорания, нагре­вается ими. Когда насадка нагревается до определенной температуры, происходит автоматическое переключение направления потоков газа и воздуха. Нагретые регенераторы начинают работать - отдавать тепло газу и воздуху, а остывшие останавливают на нагрев. Эти переключения производят через ка­ждые 15 - 20 мин. Топливо подается в мартеновскую печь всегда с избытком воздуха, по­этому в ней всегда имеется окислительная среда. Уже в процессе загрузки чугуна и лома начинается окисление примесей.

Производительность мартенов составляет 100 т стали в час. Применение обогащенного кислородом воздуха и чистого кислорода интенсифицирует процесс выплавки стали в мартеновских печах так же, как и выплавки чугуна в домнах.

Однако прирост производства стали во всех странах в наше время происходит за счет строительства не мартеновских цехов, а кислородно-конвертерных. Кислородный конвертер устроен так же, как и бессемеровский. Отличие его от бессемеровского в том, что дно у него цельносварное, а кислород подается не снизу, а сверху, под высоким давлением (0,9 - 1,4 МПа). Корпус и днище кислородного конвертера облицованы огнеупорными материалами. Струя подаваемого кислорода внедряется в жидкий металл и вступает в реакцию с примесями чугуна. В течение первых 5-10 мин окисляются кремний и марганец. В результате реакции окисления выделяется тепло, и температура металла в конвертере поднимается до 1400 - 1450 °С После этого происходит быстрое окисление углерода - он выгорает. Кислород продолжают вдувать до тех пор, пока содержание углерода не снизится до 2%. При этом металл разогревается до 1600 °С Реакции окисления, прохо­дящие в конвертере, дают столько тепла, что его становится достаточно не только для нагрева жидкого чугуна, но и для расплавления железного лома.

Кислородно-конвертерный способ по сравнению с мартеновским и электросталеплавильным имеет более высокую производительность - до 400 - 500 т в час. К тому же он свободен от недостатков бессемеровского процесса и годится для любых видов чугуна и железного лома.

Конвертерный способ применяется не только при выплавке стали, но и при выплавке меди в цветной металлургии.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные