Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

ЛАБОРАТОРНАЯ РАБОТА №9

Определение модуля упругости (модуля Юнга) по деформации изгиба

Цель работы: определение модуля упругости (модуля Юнга) по деформации изгиба стержней прямоугольного сечения.

КРАТКАЯ ТЕОРИЯ

Деформация изгиба возникает тогда, когда к стержню, один конец которого закреплен (рис.1а ) или к стержню, свободно лежащему на опорах (рис.1б ) приложена сила, перпендикулярная к его оси. И в том и в другом случае стержень изгибается и характеристикой этой деформации может служить стрела прогиба .

Во введении к данному циклу работ было показано, что деформация изгиба представляет собой неоднородную деформацию растяжения-сжатия. Там же было получены выражения (формулы (12)и (13) введения) для определения стрел прогиба для обеих ситуаций, приведенных на рис.1.

В данной лабораторной работе будет исследоваться изгиб стержня прямоугольного сечения, свободно лежащего на опорах (рис.1б ). В этом случае стрела прогиба определяется соотношением

где L - длина стержня, Е – модуль Юнга материала стержня, Р – сила, действующая на середину стержня. Величина I определяется только формой сечения стержня и рассчитывается по формуле

. (2)

Величины, входящие в эту формулу, поясняются на рис.2. Буквой О обозначен центр масс сечения стержня. Через него проходит нейтральный слой, который не испытывает деформации сжатия-растяжения.

В данной работе используется стержень прямоугольного сечения (рис.3) Очевидно, что в этом случае центр масс сечения совпадает с его геометрическим центром и, следовательно, b 1= b 2= b /2 . Здесь b – размер стержня в направлении действия нагрузки, иначе говоря, толщина стержня. Кроме того, очевидно, что величина а не зависит от х (стержень имеет постоянную ширину. Теперь интеграл (2) вычисляется просто:

(3)

Подставляя полученное выражение в (1), получаем

или , где (4)

Выражение (4) подсказывает следующий метод определения модуля Юнга. Надо получить экспериментальную зависимость стрелы прогиба от нагрузки Р и определить тем или иным способом коэффициент пропорциональности А . Далее, проведя измерения геометрических размеров стержня, рассчитать Е.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для определения экспериментальной зависимости стрелы прогиба от нагрузки состоит из двух стоек со стальными призмами, на которых располагается стержень прямоугольного сечения из исследуемого материала. Грузы, вес которых определяется на технических весах, подвешиваются к стремени, которое помещают на одинаковом расстоянии от стоек. Стрела прогиба измеряется с помощью микрометра, установленного вертикально над стержнем в месте расположения стремени. Контакт острия на стебле микрометра со стержнем фиксируется световым индикатором.

Предварительно измеряются геометрические параметры установки, т.е. величины L , a и b после чего исследуемый стержень размещается на опорах.

Далее необходимо убедиться, будут ли деформации стержня, возникающие в наших экспериментах, упругими, поскольку только в этом случае для вычисления модуля Юнга справедлива формула (1). Для выяснения этого обстоятельства используется следующая процедура. Микрометрический винт приводится в контакт со стержнем и производится отсчет показаний микрометра. Используя все имеющиеся грузы, создается максимально возможная (для данной работы) нагрузка стержня. Затем грузы снимаются, микровинт вновь приводится в контакт со стержнем и вновь производится отсчет показаний микрометра. Если показания микрометра до и после нагружения стержня совпадают в пределах погрешности измерений, можно говорить, что форма стержня восстановилась и, тем самым, утверждать, что при проведении экспериментов возникающие деформации будут упругими.

Стрела прогиба в данной установке определяется как разность показаний микрометра до нагружения стержня n0 и при нагрузке стержня n , т.е. =n0 –n , а нагрузка рассчитывается по формуле Р=mg . Используя эти соотношения можно несколько изменить формулы (4) так, чтобы в них входили результаты прямых измерений

или = n 0 – n = B m , где . (5)

Определив коэффициент пропорциональности В по экспериментальной зависимости стрелы прогиба от массы груза теперь нетрудно рассчитать значение модуля Юнга.

Экспериментальная зависимость от m при увеличении нагрузки снимается следующим образом. В отсутствие нагрузки отсчитывается показание микрометра n 0 . Подвешивается груз массой m 1 и отсчитывается показание микрометра n 1 . Очевидно, 1 = n 0 – n 1 . Добавляется груз массой m 2 . Суммарная масса нагрузки будет составлять m 1+ m 2 . Отсчитывается показание микрометра n 2 , определяется 2 . Добавляется следующий груз и т.д.

Аналогичным образом определяется экспериментальная зависимость от m при разгрузке. Отсчитывается показание микрометра при максимальной подвешенной массе, убирается один груз, вновь отсчитывается показание микрометра и так до тех пор, пока не будут сняты все грузы. В отсутствии нагрузки определяется новое значение n 0 .

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

    в отсутствие нагрузке привести в контакт со стержнем стебель микрометра, произвести отсчет показания микрометра n 0 ;

    взвесить одну из гирь и подвесить ее к стремени. Вращением головки микрометра восстановить контакт острия стебля микрометра со стержнем. Определить новое показание микрометра;

    последовательно добавлять к подвешенным гирям остальные, предварительно взвешивая их. После подвешивания очередной гири восстанавливать контакт острия стебля микрометра со стержнем и отсчитывать показания микрометра;

    результаты измерений занести в таблицу, вид которой приведен ниже, рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при нагружении стержня.

п/п

m, кг

n , мм

, мм

 , мм

1 = n0-n1

2 = n0-n2

k = n0-n2

    Снять зависимость величины прогиба от массы груза при разгрузке стержня. Для этого

    подвесить максимальный груз, произвести отсчет показаний микрометра;

    вывести стебель микрометра из контакта со стержнем, снять одну гирю, вновь привести стебель микрометра в контакт со стержнем, произвести отсчет показания микрометра;

    повторять предыдущий пункт, последовательно снимая гири;

    сняв последнюю гирю, снова определить величину n 0 ;

    результаты измерений занести в таблицу, аналогичную вышеприведенной (ее удобно заполнять снизу вверх), рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при разгрузке стержня.

    По результаты измерений методом наименьших квадратов определить значения коэффициента В и рассчитать величины модуля Юнга при нагружении и разгрузке стержня.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Измерения геометрических размеров стержня являются прямыми измерениями, поэтому погрешности величин а ,b и L определяются стандартными методами обработки прямых измерений. Прямыми являются и измерения массы. Однако при этом будем считать, что случайная погрешность определения массы много меньше систематической, так что полная погрешность определения массы равна систематической погрешности, составляющей .

Стрела прогиба определяется косвенным образом по формуле =n0 –n , где n0 и n , прямые измерения, производимые по микрометру с точностью 0,01мм . Погрешность  определяется по формуле . Очевидно, что n 0= n = 0,01мм , так что = 0,014мм . Итак, абсолютная погрешность измерения стрелы прогиба во всех опытах будет одинакова и равна 0,014мм .

Согласно формуле (5) существует линейная связь между стрелой прогиба и массой груза, т.е. m . Коэффициент В по данным эксперимента можно было бы определить так. Каждый опыт дает определенное значение B i :

Вi = i / m i , (7)

где i и mi - значения величин и m , полученные в i -том опыте. Индекс i у величины B показывает, что это значение соответствует i -тому опыту. Из значений B i можно образовать среднее

Здесь следует отметить, что это простой, но не самый лучший способ определения B . В самом деле, m есть величина, характеризующая условия опыта, которую мы знаем практически точно, а есть результат опыта, известный с погрешностью. Погрешность  одинакова во всех измерениях. Тогда ошибка в величине B , равная i /mi , тем больше, чем меньше mi . Иначе можно сказать, что значение B , вычисленное по формуле (8), не является наилучшей оценкой истинного B . Это является следствием того, что величины B i неравноточные.

Строго задача о нахождении наилучшей оценки истинного значения B по данным эксперимента и известной зависимости типа Y=aX данном случае =B m ) ставится так. Необходимо найти такое значение B , при котором функция =B m наилучшим образом соответствует опытным данным (смысл нечеткого выражения "наилучшим образом" станет ясным из дальнейшего).

Выберем за меру отклонения функции от экспериментальных данных для i -го опыта величину (i-Bmi)2 . Если бы за меру отклонения была взята просто величина i-Bmi , то сумма отклонений в нескольких опытах могла бы оказаться весьма малой за счет взаимного уничтожения отдельных слагаемых большой величины, но имеющих разные знаки. Это, однако, вовсе не говорило бы о том, что функция =Bm хороша. Очевидно, что такого взаимного уничтожения не будет, если мера отклонения выбрана в виде (i-Bmi)2 .

Итак, в качестве меры общего отклонения S в описании опытных данных функцией =Bm необходимо взять сумму мер отклонений для всех опытов, то есть:

. (9)

Таким образом, наша функция будет наилучшим способом описывать опытные данные, если S , то есть сумма квадратов отдельных отклонений, минимальна. Метод определения констант, входящих в формулу, из требования минимальности S , называется методом наименьших квадратов.

Величина S является функцией B , т.е. S=S(B) . Чтобы найти такое значение B, которое доставляет минимум функции S (наилучшее значение B ), необходимо, как известно, решить уравнение dS/dB=0 . Используя (9), получаем:

что дает . (10)

Итак, подставляя в формулу (10) экспериментальные значения mi и i , рассчитывается значение величина, являющееся наилучшей оценкой истинного B . Среднеквадратичное отклонение определяется по формуле:

. (11)

Для расчета доверительного интервала о B выбирается доверительная вероятность и определяется коэффициент Стьюдента t ,k-1 , т.е. для числа на единицу меньше числа проделанных опытов. Тогда, как обычно, о B=t ,k-1SB .

Методом наименьших квадратов следует обработать экспериментальные точки, полученные как при нагружении стержня, так и при его разгрузке. Следует также на экспериментальных графиках провести "наилучшие" прямые, используя значение рассчитанные значения В .

После расчета коэффициента пропорциональности В можно рассчитать по формуле (6) значение модуля Юнга. Погрешности, входящих в эту формулу величин, известны. Естественно, что значения этих погрешностей определяют и погрешность определения величины E . Величина E является результатом косвенного измерения. Значение E определяется по формуле погрешности косвенных измерений. Предполагая при этом, g =0 , можно записать:

Взяв производные и поделив обе части (12) на величину E= g L3/4ab3 B , получим выражение, которое удобно использовать для расчета погрешности

. (13)

Подставляя в формулу (6) вначале случайные, а затем систематические погрешности, можно определить соответственно случайную и систематическую (С Е ) погрешности измерения модуля Юнга. Полная погрешность единичного измерения модуля Юнга определяется по формуле.Таким образом, будут получены два значения модуля Юнга (из экспериментов при нагружении и разгрузке стержня). Их надо сравнить друг с другом и с табличными значениями.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что такое механическое напряжение и относительная деформация? Какова связь между ними (на примере деформации сжатия-растяжения)? Что такое механическое напряжение и относительная деформация с молекулярной точки зрения?

    В чем состоит закон Гука? Каков физический смысл модуля Юнга, модуля сдвига? Что такое коэффициент Пуассона?

    Почему модуль Юнга может быть определен из наблюдений деформаций изгиба?

    Каковы основные этапы вывода формулы (1)? Что такое «момент инерции сечения» I ?

    Определите относительную погрешность величины A , вычисляемой по формуле A=B-C , если B=100, C=99 и относительные погрешности их определения составляют 1%.

0. ВВЕДЕНИЕ

В методических указаниях к лабораторной работе N 3 "Оп-ределение модуля упругости и коэффициента Пуассона" указывает-ся цель работы, приводится характеристика испытуемого образца и даётся методика проведения испытаний.

Для лучшего усвоения материала по темам: "Растяжение и сжатие" и "Упруго – механические свойства материалов" приво-дятся основные теоретические положения, позволяющие квали-фицированно провести испытания, экспериментально определить по одному испытанию образца величины упругих постоянных (Е и μ) и проанализировать полученные результаты.

Завершаются методические указания перечнем возможных вопросов при защите отчета по этой лабораторной работе.

2. ЦЕЛЬ РАБОТЫ

Определить опытным путем величину модуля упругости Ε и коэффициент Пуассона μ и сравнить полученные результаты со справочными данными.

3. ОБОРУДОВАНИЕ, ПРИБОРЫ И ИНСТРУМЕНТЫ

Испытательная машина – МР-0,5. Тензометрическая станция – ЦТМ-5. Штангенциркуль.

4. ХАРАКТЕРИСТИКА ОБРАЗЦОВ

Вид образца, имеющего прямоугольное поперечное сечение, представлен на рис.1. На больших сторонах поперечного сечения образца наклеены по одному тензодатчику в продольном направлении и по одному в поперечном. Каждый тензодатчик под-ключен к отдельному каналу тензометрической станции ЦТМ-5.

Рис. 1. Вид обра о тензо датчиками

5. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

При деформациях подавляющего большинства материалов в упругой стадии справедлив закон Гука, который устанавливает прямую пропорциональную зависимость между напряжениями и деформациями:

Величина Ε представляет собой коэффициент пропорцио-нальности и называется модулем упругости первого рода. Так как относительное удлинение – величина безразмерная, модуль упруго-сти Ε имеет размерность напряжения. Закон Гука справедлив при напряжениях, не превышающих предел пропорциональности апц.

На диаграмме растяжения (сжатия) (рис.2) модуль упруго-сти Ε представлен тангенсом угла наклона прямой О А к оси (tg α).

Рис.2. Диаграмма растяжения (сжатия) образца из малоуглеродистой стали:

  1. растяжения,
  2. сжатия

При растяжении стержня, его удлинение в продольном на-правлении сопровождается пропорциональным сужением в попе-речном направлении, что показано на рис.3.

Рис.3. Изменение формы образца при испытаниях на растяжение

Продольную деформацию принято обозначать: абсолютную – Δi (Δ^ = i\- l),

относительную -ε (ε = Δ -£ / ^). Поперечную деформацию обозначим:

абсолютную – ДЬ (Ab = bi – b),

относительную – ε1 (ε1 = Ab / b). Как показывает опыт ε’= – μ · ε,

где μ – безразмерный коэффициент пропорциональности, называе-мый коэффициентом Пуассона, величина которого зависит только от материала и характеризует его свойства. Знак " – " указывает, что продольная и поперечная деформации всегда противоположны по знаку. Коэффициент Пуассона принято считать положительной величиной, поэтому относительные линейные деформации берутся по абсолютной величине (μ= ε11 /1 ε |).

6. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ

1.- Перед испытанием студентам необходимо ознакомиться с устройством машины МР-0,5 (первое занятие) и правилами поведения в лаборатории при проведении испытаний (вводный инструктаж).

2. Измеряют штангенциркулем характерные линейные размеры испытуемого образца.

3. Убеждаются в подключении тензодатчиков к тензометрической станции ЦТМ-5.

4.- Наблюдают за включением машины, процессом нагружения образца начальной нагрузкой (0 – 100 Η-), которая задается преподавателем.

5.- Путем последовательного переключения соответствующих каналов тензометрической станции снимают показания каждого из тензометров. Эти данные заносятся в журнал наблюдений. В отчете по лабораторной работе в разделе "Результаты испытаний" предварительно готовится таблица..

6. Наблюдают за последующими двумя ступенями нагружения (100 – 200 Η каждая по указанию преподавателя) образца, снимают показания тензодатчиков и заносят их в таблицу.

7. В процессе проведения испытаний внимательно следят за ком-ментариями преподавателя и при завершении испытаний по его указанию приступают к обработке результатов испытания.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЯ

В журнале наблюдений (табл.) подсчитываются прираще-ния соответствующих отсчетов и определяются их средние значе-ния (АсрР, АсрАь АсрА2, ДсрВь АсрВ2). Затем подсчитываются средние приращения по тензометрам в продольном (АсрА) и попе-речном (АсрВ) направлениях.

По найденным АсрА и АсрВ находятся значения относи-тельной линейной деформации соответственно в продольном и поперечном направлениях:

ε = АсрА · с, ε1 = АсрВ · с,

где с – коэффициент чувствительности тензодатчика, который оп-ределяется тарировкой и сообщается преподавателем.

Определяются значение нормального напряжеия, средин для каждой ступени нагружения образца:

σ = АсрР / F, где F – площадь поперечного сечения образца (F = b · d).

Исходя из закона Гука при растяжении – сжатии (σ= Ε-ε) находится модуль упругости материала образца:

По найденным значениям относительных деформаций в продольном и поперечном направлениях определяется величина коэффициента Пуассона:

Для любого материала величина коэффициента Пуассона должна находиться в пределах от 0 до 0,5.

Найденные значения модуля упругости Ε и коэффициента Пуассона μ следует сравнить с соответствующими величинами, приведенными в справочной литературе и сделать выводы.

Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации. Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой. Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р. Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.

Основные сведения

Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м 2 или в Па.

Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (10 12 Па)

Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.

Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.

E- это частное от деления нормальных напряжений σ на относительное удлинение ε.

Закон Гука также можно сформулировать и с использованием модуля Юнга.

Физический смысл модуля Юнга

Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.

Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.

Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.

В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:

Δl = α * (lF) / S

Величину, обратную α, и называют модулем Юнга:

Относительная деформация:

ε = (Δl) / l = α * (F/S)

Отношение растягивающей силы F к S называют упругим напряжением σ:

Закон Гука, записанный с использованием модуля Юнга, выглядит так:

σ = ε/α = E ε

Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.

В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.

Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l

Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.

Значения модуля юнга для некоторых материалов

В таблице показаны значения E ряда распространенных веществ.

Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.

Предел прочности материала

Это предел возникающего напряжения, после которого образец начинает разрушаться.

Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.

Кроме того, существуют пределы прочности на сжатие материала и на растяжение. Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления. В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σ раст в МПа:

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Связь с другими модулями упругости

Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:

E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.

На сегодняшний день существует несколько методик испытания образцов материалов. При этом одним из самых простых и показательных являются испытания на растяжение (на разрыв), позволяющие определить предел пропорциональности, предел текучести, модуль упругости и другие важные характеристики материала. Так как важнейшей характеристикой напряженного состояния материала является деформация, то определение значения деформации при известных размерах образца и действующих на образец нагрузок позволяет установить вышеуказанные характеристики материала.

Тут может возникнуть вопрос: почему нельзя просто определить сопротивление материала? Дело в том, что абсолютно упругие материалы, разрушающиеся только после преодоления некоторого предела - сопротивления, существуют только в теории. В реальности большинство материалов обладают как упругими так и пластическими свойствами, что это за свойства, рассмотрим ниже на примере металлов.

Испытания металлов на растяжение проводятся согласно ГОСТ 1497-84. Для этого используются стандартные образцы. Методика испытаний выглядит приблизительно так: к образцу прикладывается статическая нагрузка, определяется абсолютное удлинение образца Δl , затем нагрузка увеличивается на некоторое шаговое значение и снова определяется абсолютное удлинение образца и так далее. На основании полученных данных строится график зависимости удлинений от нагрузки. Этот график называется диаграммой напряжений.

Рисунок 318.1 . Диаграмма напряжений для стального образца.

На данной диаграмме мы видим 5 характерных точек:

1. Предел пропорциональности Р п (точка А)

Нормальные напряжения в поперечном сечении образца при достижении предела пропорциональности будут равны:

σ п = Р п /F o (318.2.1)

Предел пропорциональности ограничивает участок упругих деформаций на диаграмме. На этом участке деформации прямо пропорциональны напряжениям, что выражается законом Гука:

Р п = kΔl (318.2.2)

где k - коэффициент жесткости:

k = EF/l (318.2.3)

где l - длина образца, F - площадь сечения, Е - модуль Юнга.

Модули упругости

Главными характеристиками упругих свойств материалов являются модуль Юнга Е (модуль упругости первого рода, модуль упругости при растяжении), модуль упругости второго рода G (модуль упругости при сдвиге) и коэффициент Пуассона μ (коэффициент поперечной деформации).

Модуль Юнга Е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности

Модуль Юнга также определяется опытным путем при испытании стандарт-ных образцов на растяжение. Так как нормальные напряжения в материале равны силе, деленной на начальную площадь сечения:

σ = Р/F о (318.3.1), (317.2)

а относительное удлинение ε - отношению абсолютной деформации к начальной длине

ε пр = Δl/l o (318.3.2)

то модуль Юнга согласно закону Гука можно выразить так

Е = σ/ε пр = Pl o /F o Δl = tgα (318.3.3)

Рисунок 318.2 . Диаграммы напряжений некоторых сплавов металлов

Коэффициент Пуассона μ показывает отношение поперечных деформаций к продольным

Под воздействием нагрузок не только увеличивается длина образца, но и уменьшается площадь рассматриваемого поперечного сечения (если предположить, что объем материала в области упругих деформаций остается постоянным, то значит увеличение длины образца приводит к уменьшению площади сечения). Для образца, имеющего круглое сечение, изменение площади сечения можно выразить так:

ε поп = Δd/d o (318.3.4)

Тогда коэффициент Пуассона можно выразить следующим уравнением:

μ = ε поп /ε пр (318.3.5)

Модуль сдвига G показывает отношение касательных напряжений т к углу сдвига

Модуль сдвига G может быть определен опытным путем при испытании образцов на кручение.

При угловых деформациях рассматриваемое сечение перемещается не линейно, а под некоторым углом - углом сдвига γ к начальному сечению. Так как касательные напряжения равны силе, деленной на площадь в плоскости которой действует сила:

т = Р/F (318.3.6)

а тангенс угла наклона можно выразить отношением абсолютной деформации Δl к расстоянию h от места фиксации абсолютной деформации до точки, относительно которой осуществлялся поворот:

tgγ = Δl/h (318.3.7)

то при малых значениях угла сдвига модуль сдвига можно выразить следующим уравнением:

G = т /γ = Ph/FΔl (318.3.8)

Модуль Юнга, модуль сдвига и коэффициент Пуассона связаны между собой следующим отношением:

Е = 2(1 + μ)G (318.3.9)

Значения постоянных Е, G и µ приводятся в таблице 318.1

Таблица 318.1 . Ориентировочные значения упругих характеристик некоторых материалов

Примечание: Модули упругости являются постоянными величинами, однако технологии изготовления различных строительных материалов меняются и более точные значения модулей упругости следует уточнять по действующим в настоящий момент нормативным документам. Модули упругости бетона зависят от класса бетона и потому здесь не приводятся.

Упругие характеристики определяются для различных материалов в пределах упругих деформаций, ограниченных на диаграмме напряжений точкой А. Между тем на диаграмме напряжений можно выделить еще несколько точек:

2. Предел упругости Р у

Нормальные напряжения в поперечном сечении образца при достижении предела упругости будут равны:

σ у = Р у /F o (318.2.4)

Предел упругости ограничивает участок на котором появляющиеся пластические деформации находятся в пределах некоторой малой величины, нормированной техническими условиями (например 0,001%; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ 0.001 , σ 0.01 и т.д.

3. Предел текучести Р т

σ т = Р т /F o (318.2.5)

Ограничивает участок диаграммы на котором деформация увеличивается без значительного увеличения нагрузки (состояние текучести). При этом по всему объему образца происходит частичный разрыв внутренних связей, что и проводит к значительным пластическим деформациям. Материал образца полностью не разрушается, но его начальные геометрические размеры претерпевают необратимые изменения. На отшлифованной поверхности образцов наблюдаются фигуры текучести - линии сдвигов (открытые профессором В. Д. Черновым). Для различных металлов углы наклона этих линий различны, но находятся в пределах 40-50 о. При этом часть накопленной потенциальной энергии необратимо расходуется на частичный разрыв внутренних связей. При испытании на растяжение принято различать верхний и нижний пределы текучести - соответственно наибольшее и наименьшее из напряжений, при которых возрастает пластическая (остаточная) деформация при почти постоянной величине действующей нагрузки.

На диаграммах напряжений отмечен нижний предел текучести. Именно этот предел для большинства материалов принимается за нормативное сопротивление материала.

Некоторые материалы не имеют выраженной площадки текучести. Для них за условный предел текучести σ 0.2 принимается напряжение, при котором остаточное удлинение образца достигает значения ε ≈0,2%.

4. Предел прочности Р макс (временное сопротивление)

Нормальные напряжения в поперечном сечении образца при достижении предела прочности будут равны:

σ в = Р макс /F o (318.2.6)

После преодоления верхнего предела текучести (на диаграммах напряжения не показан) материал снова начинает сопротивляться нагрузкам. При максимальном усилии Р макс начинается полное разрушение внутренних связей материала. При этом пластические деформации концентрируются в одном месте, образуя в образце так называемую шейку.

Напряжение при максимальной нагрузке называется пределом прочности или временным сопротивлением материала.

В таблицах 318.2 - 318.5 приведены ориентировочные величины пределов прочности для некоторых материалов:

Таблица 318.2 Ориентировочные пределы прочности на сжатие (временные сопротивления) некоторых строительных материалов.

Примечание : Для металлов и сплавов значение пределов прочности следует определять согласно нормативных документов. Значение временных сопротивлений для некоторых марок стали можно посмотреть .

Таблица 318.3 . Ориентировочные пределы прочности (временные сопротивления) для некоторых пластмасс

Таблица 318.4 . Ориентировочные пределы прочности для некоторых волокон

Таблица 318.5 . Ориентировочные пределы прочности для некоторых древесных пород

5. Разрушение материала Р р

Если посмотреть на диаграмму напряжений, то создается впечатление, что разрушение материала наступает при уменьшении нагрузки. Такое впечатление создается потому, что в результате образования "шейки" значительно изменяется площадь сечения образца в районе "шейки". Если построить диаграмму напряжений для образца из малоуглеродистой стали в зависимости от изменяющейся площади сечения, то будет видно, что напряжения в рассматриваемом сечении увеличиваются до некоторого предела:

Рисунок 318.3 . Диаграмма напряжений: 2 - по отношению к начальной площади поперечного сечения, 1 - по отношению к изменяющейся площади сечения в районе шейки.

Тем не менее более правильным является рассмотрение прочностных характеристик материала по отношению к площади первоначального сечения, так как расчетами на прочность изменение первоначальной геометрической формы редко предусматривается.

Одной из механических характеристик металлов является относительное изменение ψ площади поперечного сечения в районе шейки, выражаемое в процентах:

ψ = 100(F o - F)/F o (318.2.7)

где F o - начальная площадь поперечного сечения образца (площадь поперечного сечения до деформации), F - площадь поперечного сечения в районе "шейки". Чем больше значение ψ, тем более ярко выражены пластические свойства материала. Чем меньше значение ψ, тем больше хрупкость материала.

Если сложить разорванные части образца и измерить его удлинение, то выяснится, что оно меньше удлинения на диаграмме (на длину отрезка NL), так как после разрыва упругие деформации исчезают и остаются только пластические. Величина пластической деформации (удлинения) также является важной характеристикой механических свойств материала.

За пределами упругости, вплоть до разрушения, полная деформация состоит из упругой и пластической составляющих. Если довести материал до напряжений, превышающих предел текучести (на рис. 318.1 некоторая точка между пределом текучести и пределом прочности), и затем разгрузить его, то в образце останутся пластические деформации, но при повторном загружении через некоторое время предел упругости станет выше, так как в данном случае изменение геометрической формы образца в результате пластических деформаций становится как бы результатом действия внутренних связей, а изменившаяся геометрическая форма, становится начальной. Этот процесс загрузки и разгрузки материала можно повторять несколько раз, при этом прочностные свойства материала будут увеличиваться:

Рисунок 318.4 . Диаграмма напряжений при наклепе (наклонные прямые соответствуют разгрузкам и повторным загружениям)

Такое изменение прочностных свойств материала, получаемое путем повторяющихся статических загружений, называется наклепом. Тем не менее при повышении прочности металла путем наклепа уменьшаются его пластические свойства, а хрупкость увеличивается, поэтому полезным как правило считается относительно небольшой наклеп.

Работа деформации

Прочность материала тем выше, чем больше внутренние силы взаимодействия частиц материала. Поэтому величина сопротивления удлинению, отнесенная к единице объема материала, может служить характеристикой его прочности. В этом случае предел прочности не является исчерпывающей характеристикой прочностных свойств данного материала, так как он характеризует только поперечные сечения. При разрыве разрушаются взаимосвязи по всей площади сечения, а при сдвигах, которые происходят при всякой пластической деформации, разрушаются только местные взаимосвязи. На разрушение этих связей затрачивается определенная работа внутренних сил взаимодействия, которая равна работе внешних сил, затрачиваемой на перемещения:

А = РΔl/2 (318.4.1)

где 1/2 - результат статического действия нагрузки, возрастающей от 0 до Р в момент ее приложения (среднее значение (0 + Р)/2)

При упругой деформации работа сил определяется площадью треугольника ОАВ (см. рис. 318.1). Полная работа, затраченная на деформацию образца и его разрушение:

А = ηР макс Δl макс (318.4.2)

где η - коэффициент полноты диаграммы, равный отношению площади всей диаграммы, ограниченной кривой АМ и прямыми ОА, MN и ON, к площади прямоугольника со сторонами 0Р макс (по оси Р) и Δl макс (пунктир на рис. 318.1). При этом надо вычесть работу, определяемую площадью треугольника MNL (относящуюся к упругим деформациям).

Работа, затрачиваемая на пластические деформации и разрушение образца, является одной из важных характеристик материала, определяющих степень его хрупкости.

Деформация сжатия

Деформации сжатия подобны деформациям растяжения: сначала происходят упругие деформации, к которым за пределом упругости добавляются пластические. Характер деформации и разрушения при сжатии показан на рис. 318.5:

Рисунок 318.5

а - для пластических материалов; б - для хрупких материалов; в - для дерева вдоль волокон, г - для дерева поперек волокон.

Испытания на сжатие менее удобны для определения механических свойств пластических материалов из-за трудности фиксирования момента разрушения. Методы механических испытаний металлов регламентируются ГОСТ 25.503-97. При испытании на сжатие формы образца и его размеры могут быть различными. Ориентировочные значения пределов прочности для различных материалов приведены в таблицах 318.2 - 318.5.

Если материал находится под нагрузкой при постоянном напряжении, то к практически мгновенной упругой деформации постепенно прибавляется добавочная упругая деформация. При полном снятии нагрузки упругая деформация уменьшается пропорционально уменьшающимся напряжениям, а добавочная упругая деформация исчезает медленнее.

Образовавшаяся добавочная упругая деформация при постоянном напряжении, которая исчезает не сразу после разгрузки, называется упругим последействием.

Влияние температуры на изменение механических свойств материалов

Твердое состояние - не единственное агрегатное состояние вещества. Твердые тела существуют только в определенном интервале температур и давлений. Повышение температуры приводит к фазовому переходу из твердого состояния в жидкое, а сам процесс перехода называется плавлением. Температуры плавления, как и другие физические характеристики материалов, зависят от множества факторов и также определяются опытным путем.

Таблица 318.6 . Температуры плавления некоторых веществ

Примечание : В таблице приведены температуры плавления при атмосферном давлении (кроме гелия).

Упругие и прочностные характеристики материалов, приведенные в таблицах 318.1-318.5, определяются как правило при температуре +20 о С. ГОСТом 25.503-97 допускается проводить испытания металлических образцов в диапазоне температур от +10 до +35 о С.

При изменении температуры изменяется потенциальная энергия тела, а значит, изменяется и значение внутренних сил взаимодействия. Поэтому механические свойства материалов зависят не только от абсолютной величины температуры, но и от продолжительности ее действия. Для большинства материалов при нагреве прочностные характеристики (σ п, σ т и σ в) уменьшаются, при этом пластичность материала увеличивается. При снижении температуры прочностные характеристики увеличиваются, но при этом повышается хрупкость. При нагреве уменьшается модуль Юнга Е, а коэффициент Пуассона увеличивается. При снижении температуры происходит обратный процесс.

Рисунок 318.6 . Влияние температуры на механические характеристики углеродистой стали.

При нагревании цветных металлов и сплавов из них прочность их сразу падает и при температуре, близкой к 600° С, практически теряется. Исключение составляет алюмотермический хром, предел прочности которого с увеличением температуры увеличивается и при температуре равной 1100° С достигает максимума σ в1100 = 2σ в20 .

Характеристики пластичности меди, медных сплавов и магния с ростом температуры уменьшаются, а алюминия - увеличиваются. При нагреве пластмасс и резины их предел прочности резко снижается, а при охлаждении эти материалы становятся очень хрупкими.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих - повышение предела прочности (селектрон).

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные