Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные

Сейчас, во времена постоянно растущих цен на энергоносители, качественное утепление стало одной из первоочередных задач при возведении новых и ремонте уже построенных домов. Затраты на работы, связанные с повышением энергоэффективности дома, практически всегда окупаются в течение нескольких лет. Главное при их выполнении не наделать ошибок, которые сведут все старания на нет в лучшем случае, в в худшем — ещё и навредят.

Современный рынок строительных материалов просто завален всевозможными утеплителями. К сожалению, производители, или точнее будет сказать, продавцы делают всё, чтобы мы, рядовые застройщики, выбрали именно их материал и отдали свои деньги именно им. А приводит это к тому, что в различных источниках информации (особенно в интернете) появляется много ошибочных и вводящих в заблуждение рекомендаций и советов. Запутаться в них простому человеку довольно легко.

Справедливости ради нужно сказать, что современные утеплители действительно довольно эффективны. Но чтобы использовать их свойства на все сто процентов, во-первых, должен производиться правильный, соответствующий инструкции производителя, монтаж и, во-вторых, применение утеплителя должно всегда быть уместным и целесообразным в каждом конкретном случае. Так как же сделать правильное и эффективное утепление дома? Попробуем разобраться с этим вопросом подробнее…

Ошибки при утеплении дома

Можно выделить три основные ошибки, которые наиболее часто допускают застройщики:

  • неправильный подбор материалов и их последовательности для «пирога» ограждающей конструкции (стены, пола, крыши…);
  • несоответствующая нормам, выбранная «на авось» толщина слоя утеплителя;
  • неправильный монтаж с несоблюдением технологии для каждого конкретного вида утеплителя.

Последствия этих ошибок могут быть весьма печальными. Это и ухудшении микроклимата в доме с повышением влажности и постоянным запотеванием окон в холодное время года, и появление конденсата в тех местах, где это не допустимо, и появление неприятно пахнущего грибка с постепенным загниванием внутренней отделки либо ограждающих конструкций.

Выбор способа утепления

Самое главное правило, которому лучше следовать всегда, гласит — утепляйте дом снаружи, а не изнутри! Значение этой важной рекомендации наглядно продемонстрировано на следующем рисунке:

Сине-красная линия на рисунке отображает изменение температуры в толще «пирога» стены. По ней прекрасно видно, что если утепление производить изнутри, в холодное время года стена будет промерзать.

Вот к примеру такой случай, кстати основанный на вполне реальных событиях. Живёт хороший человек в угловой квартире многоэтажного панельного дома и зимой, особенно в ветреную погоду, мёрзнет. Тогда он решает утеплить холодную стену. А так как квартира его на пятом этаже, то ничего лучше, чем утеплить изнутри, придумать не получается. При этом в один субботний полдень он по телевизору смотрит передачу о ремонте и видит, как там в похожей квартире утепляют стены тоже изнутри при помощи матов из минеральной ваты.

И всё там показали вроде бы правильно и красиво: выставили каркас, заложили утеплитель, закрыли его пароизоляционной плёнкой и обшили гипсокартоном. Но только не объяснили, что использовали минеральную вату не потому, что это самый подходящий материал для утепления стен изнутри, а потому, что спонсором их сегодняшнего выпуска является крупный производитель минераловатных утеплителей.

И вот наш хороший человек решает это повторить. Делает всё также, как по телевизору, и в квартире сразу становится ощутимо теплее. Только радость его от этого длится не долго. Через некоторое время он начинает ощущать, что в комнате появился какой-то посторонний запах и воздух стал как-будто тяжелее. А ещё через несколько дней внизу стены на гипсокартоне стали проявляться тёмные сырые пятна. Хорошо ещё, что обои не успел поклеить. Так что же случилось?

А случилось то, что панельная стена, закрытая от внутреннего тепла слоем утеплителя, быстро промёрзла. Водяные пары, которые содержатся в воздухе и из-за разницы парциальных давлений всегда стремятся изнутри тёплого помещения наружу, стали попадать в утеплитель, несмотря на сделанную пароизоляцию, через плохо проклеенные или вообще не проклеенные стыки, через дырки от скобок степлера и саморезов крепления гипсокартона. При контакте паров с промёрзшей стеной, на ней начал выпадать конденсат. Утеплитель стал сыреть и накапливать всё больше влаги, что и привело к неприятному затхлому запаху и появлению грибка. Кроме того намокшая минеральная вата быстро теряет свои теплосберегающие свойства.

Встаёт вопрос — что же тогда человеку делать в данной ситуации? Ну для начала нужно всё таки постараться найти возможность сделать утепление снаружи. Благо сейчас всё больше появляется организаций, занимающихся такими работами вне зависимости от высоты. Конечно, их расценки многим покажутся очень высокими — 1000÷1500 руб.за 1м² под ключ. Но это только на первый взгляд. Если в полном объёме посчитать все затраты при внутреннем утеплении (утеплитель, его обшивка, шпаклёвки, грунтовки, новая покраска или новые обои плюс зарплата работникам), то в итоге разница с наружным утеплением становится не принципиальной и конечно лучше предпочесть именно его.

Другое дело, если нет возможности получить разрешение на наружное утепление (напр., дом имеет какие-то архитектурные особенности). В этом крайнем случае, если уж Вы решились утеплить стены изнутри, используйте утеплители с минимальной (почти нулевой) паропроницаемостью, такие как пеностекло, экструдированный пенополистирол.

Пеностекло является более экологичным материалом, но к сожалению и более дорогим. Так если 1 м³ экструдированнного пенополистирола стоит около 5000 рублей, то 1 м³ пеностекла — около 25000 рублей, т.е. в пять раз дороже.

Подробно о технологии внутреннего утепления стен будет говорится в отдельной статье. Сейчас отметим лишь тот момент, что при монтаже утеплителя необходимо по максимуму исключать нарушение его целостности. Так, например, ЭППС лучше к стене приклеивать и от дюбелей отказаться совсем (как на рисунке), либо свести их число к минимуму. В качестве отделки утеплитель покрывают гипсовыми штукатурными смесями, либо также обклеивают листами гипсокартона без всяких каркасов и без всяких саморезов.

Как определить нужную толщину утеплителя?

С тем, что утепление дома лучше производить снаружи, чем изнутри, мы более или менее разобрались. Теперь следующий вопрос — а сколько нужно заложить утеплителя в каждом конкретном случае? Зависеть это будет от следующих параметров:

  • какие климатические условия в данном регионе;
  • какой требуемый микроклимат в помещении;
  • какие материалы составляют «пирог» ограждающей конструкции.

Немного о том, как им пользоваться:

Расчёт утепления стен дома

Допустим «пирог» нашей стены состоит из слоя гипсокартона — 10 мм (внутренняя отделка), газосиликатного блока D-600 — 300 мм, минераловатного утеплителя — ? мм и сайдинга.

Вносим в программу исходные данные в соответствии со следующим скриншотом:

Итак по пунктам:

1) Расчет выполнить согласно: — оставляем точку напротив «СП 50.13330.2012 и СП 131.13330.2012», как мы видим эти нормы более свежие.

2) Населенный пункт: — выбираем «Москва» либо любой другой, который есть в списке и к Вам ближе.

3) Тип зданий и помещений — устанавливаем «Жилые.»

4) Вид ограждающей конструкции — выбираем «Наружные стены с вентилируемым фасадом.» , так как наши стены обшиты снаружи сайдингом.

5) Расчетная средняя температура и относительная влажность внутреннего воздуха определяются автоматически, мы их не трогаем.

6) Коэффициент теплотехнической однородности «r» — его значение выбираем нажав на знак вопроса. Ищем, что нам подходит в появившихся таблицах. Если ничего не подходит — принимаем значение «r» из указаний Мосгосэкспертизы (указаны вверху страницы над таблицами). Для нашего примера мы взяли значение r=0,85 для стен с оконными проёмами.

Данный коэффициент в большинстве подобных онлайн-программ для теплотехнического расчёта отсутствует. Его введение делает расчёт более точным, так как он характеризует неоднородность материалов стены. К примеру, при расчёте кирпичной кладки этот коэффициент учитывает наличие растворных швов, теплопроводность которых значительно больше, чем у самого кирпича.

7) Опции расчёта: — ставим галочки напротив пунктов «Расчёт сопротивления паропроницанию» и «Расчёт точки росы».

8) Вносим в таблицу материалы, составляющие наш «пирог» стены. Обратите внимание — принципиально важно вносить их в очерёдности от наружного слоя к внутреннему.

Примечание: Если стена имеет наружный слой материала отделённый прослойкой вентилируемого воздуха (в нашем примере это сайдинг), этот слой в расчёт не включают. Он уже учтён при выборе вида ограждающей конструкции.

Итак, мы внесли в таблицу следующие материалы — минераловатный утеплитель KNAUF, газосиликат плотностью 600 кг/м³ и известково-песчаную штукатурку. При этом автоматически появляются значения коэффициентов теплопроводности (λ) и паропроницаемости (μ).

Толщины слоёв газосиликата и штукатурки нам известны изначально, вносим их в таблицу в миллиметрах. А искомую толщину утеплителя подбираем до тех пор, пока под таблицей не появится надпись «R 0 пр >R 0 норм (… > …) конструкция соответствует требованиям по теплопередаче. «

В нашем примере условие начинает выполняться при толщине минеральной ваты равной 88 мм. Округляем это значение в большую сторону до 100 мм, так как именно такая толщина имеется в продаже.

Также под таблицей мы видим надписи, говорящие о том, что влагонакопление в утеплителе невозможно и выпадение конденсата невозможно . Это свидетельствует о правильно выбранной схеме утепления и толщине слоя утеплителя.

Кстати данный расчёт позволяет нам увидеть то, о чём говорилось в первой части этой статьи, а именно, почему утепление стен изнутри лучше не делать. Поменяем слои местами, т.е. поставим утеплитель внутрь помещения. Что при этом получается смотрите на следующем скриншоте:

Видно, что хотя конструкция по прежнему соответствует требованиям по теплопередаче, но условия паропроницаемости уже не выполняются и возможно выпадение конденсата, о чём сказано под табличкой материалов. О последствиях этого говорилось выше.

Ещё одним достоинством данной онлайн-программы является то, что нажав на кнопку «Отчёт » внизу страницы, можно получить весь проведённый теплотехнический расчёт в виде формул и уравнений с подстановкой всех значений. Кому то это возможно будет интересно.

Расчёт утепления чердачного перекрытия

Пример теплотехнического расчёта чердачного перекрытия показан на следующем скриншоте:

Отсюда видно, что в данном примере необходимая толщина минеральной ваты для утепления чердака составляет не менее 160 мм. Перекрытие — по деревянным балкам, «пирог» составляют — утеплитель, сосновые доски толщиной 25 мм, ДВП — 5 мм, воздушный зазор — 50 мм и подшивка гипсокартоном — 10 мм. Воздушный зазор присутствует в расчёте из-за наличия каркаса под гипсокартон.

Расчёт утепления цокольного перекрытия

Пример теплотехнического расчёта для цокольного перекрытия показан на следующем скриншоте:

В данном примере, когда цокольное перекрытие является монолитным железобетонным толщиной 200 мм и в доме есть неотапливаемое подполье, минимально необходимая толщина утепления экструдированным пенополистиролом составляет около 120 мм.

Таким образом выполнение теплотехнического расчёта позволяет правильно скомпоновать «пирог» ограждающей конструкции, выбрать необходимую толщину каждого слоя и в конце концов выполнить эффективное утепление дома. После этого главное произвести качественный и правильный монтаж утеплителя. Выбор их сейчас очень большой и в работе с каждым есть свои особенности. Об этом обязательно будет говориться в других статьях нашего сайта, посвящённых теме утепления жилища.

Будем рады видеть Ваши комментарии по данной теме!

Стены зданий, защищают нас от ветра, осадков и часто служат несущими конструкциями для крыши. И все-таки главной функцией стен, как ограждающих конструкций, является защита человека от не комфортных температур (в основном низких) воздуха окружающего пространства.

Теплотехнический расчет стены определяет необходимые толщины слоев примененных материалов, обеспечивающие тепловую изоляцию помещений с точки зрения обеспечения комфортных санитарно-гигиенических условий для нахождения человека в здании и требований законодательства по энергосбережению.

Чем сильнее утеплены стены, тем меньше будущие эксплуатационные затраты на отопление здания, но при этом больше затраты на приобретение материалов при строительстве. До какой степени разумно утеплять ограждающие конструкции зависит от предполагаемого срока эксплуатации здания, целей, преследуемых инвестором строительства, и считается на практике в каждом случае индивидуально.

Санитарно-гигиенические требования определяют минимально допустимые сопротивления теплопередаче сечения стен, способные обеспечить комфорт в помещении. Эти требования следует обязательно выполнить при проектировании и строительстве! Обеспечение требований по энергосбережению позволит вашему проекту не только пройти экспертизу и потребует дополнительных разовых затрат при строительстве, но и обеспечит сокращение дальнейших затрат на отопление при эксплуатации.

Теплотехнический расчет в Excel многослойной стены.

Включаем MS Excel и начинаем рассмотрение примера теплотехнического расчета стены здания, строящегося в регионе — г. Москва.

Перед началом работы скачайте: СП 23-101-2004, СП 131. 13330.2012 и СП 50.13330.2012. Все перечисленные Своды Правил находятся в свободном доступе в Интернете.

В расчетном файле Excel в примечаниях к ячейкам со значениями параметров представлена информация, откуда следует брать эти значения, причем не только указаны номера документов, но и, зачастую, номера таблиц и даже столбцов.

Задавшись размерами и материалами слоев стены, мы проверим её на соответствие санитарно-гигиеническим нормам и нормам энергосбережения, а также вычислим расчетные температуры на границах слоев.

Исходные данные:

1…7. Ориентируясь на ссылки в примечаниях к ячейкам D4-D10, заполняем первую часть таблицы исходными данными для вашего региона строительства.

8…15. Во вторую часть исходных данных в ячейки D12-D19 вносим параметры слоев наружной стены – толщины и коэффициенты теплопроводности.

Значения коэффициентов теплопроводности материалов вы можете запросить у продавцов, найти по ссылкам в примечаниях к ячейкам D13, D15, D17, D19 или просто поиском в Сети.

В рассматриваемом примере:

первый слой — листы гипсовые обшивочные (сухая штукатурка) с плотностью 1050 кг/м 3 ;

второй слой — кирпичная кладка из сплошного глиняного обыкновенного кирпича (1800 кг/м 3) на цементно-шлаковом растворе;

третий слой — плиты минераловатные из каменного волокна (25-50 кг/м3);

четвертый слой — полимерцементная штукатурка с сеткой из стекловолокна.

Результаты:

Теплотехнический расчет стены будем выполнять, основываясь на предположении, что примененные в конструкции материалы сохраняют теплотехническую однородность в направлении распространения теплового потока.

Расчет ведется по ниже представленным формулам:

16. ГСОП =( t вр - t н ср )* Z

17. R 0 э тр =0,00035* ГСОП+1,4

Формула применима для теплотехнического расчета стен жилых зданий, детских и лечебно-профилактических учреждений. Для зданий иного назначения коэффициенты «0,00035» и «1,4» в формуле следует выбрать иными согласно Таблице 3 СП 50.13330.2012.

18. R тр =( t вр - t нр )/( Δ t в * α в )

19. R 0 =1/ α в + δ 1 / λ 1 + δ 2 / λ 2 + δ 3 / λ 3 + δ 4 / λ 4 +1/ α н

Должны выполняться условия: R 0 > R тр и R 0 > R тр .

Если не выполняется первое условие, то ячейка D24 автоматически будет залита красным цветом, сигнализируя пользователю о недопустимости применения выбранной конструкции стены. Если не выполняется только второе условие, то ячейка D24 окрасится розовым цветом. Когда расчетное сопротивление теплопередачи больше нормативных значений, ячейка D24 окрашена в светло-желтый цвет.

20. t 1 = t вр — (t вр t нр )/ R 0 *1/α в

21. t 2 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 )

22. t 3 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 )

23. t 4 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 3 /λ 3 )

24. t 5 = t вр — (t вр t нр )/ R 0 *(1/α в + δ 1 /λ 1 + δ 2 /λ 2 3 /λ 3 + δ 4 /λ 4 )

Теплотехнический расчет стены в Excel завершен.

Важное замечание.

Окружающий нас воздух содержит внутри себя воду. Чем выше температура воздуха, тем большее количество влаги он способен удерживать.

При 0˚С и 100% относительной влажности промозглый воздух ноября в наших широтах содержит в одном кубическом метре менее 5 граммов воды. В то же время раскаленный воздух в пустыне Сахара при +40˚С и всего 30% относительной влажности, удивительно, но удерживает внутри себя в 3 раза больше воды — более 15 г/м3.

Остывая и становясь холоднее, воздух не может удерживать внутри себя то количество влаги, что мог в более нагретом состоянии. В результате воздух выбрасывает из себя на прохладные внутренние поверхности стен капли влаги. Чтобы этого не происходило внутри помещений, следует при проектировании сечения стены обеспечить невозможность выпадения росы на внутренних поверхностях стен.

Так как средняя относительная влажность воздуха жилых помещений составляет 50…60%, то точка росы при температуре воздуха +22˚С составляет +11…14˚С. В нашем примере температура внутренней поверхности стены +20,4˚С обеспечивает невозможность образования росы.

Но роса может при достаточной гигроскопичности материалов образовываться внутри слоев стены и, особенно, на границах слоев! Замерзая, вода расширяется и разрушает материалы стен.

В рассмотренном выше примере точка с температурой 0˚С находится внутри слоя утеплителя и достаточно близко к наружной поверхности стены. В этой точке на схеме в начале статьи, отмеченной желтым цветом, температура меняет свое значение с положительного на отрицательное. Получается, что кирпичная кладка никогда в своей жизни не будет находиться под воздействием отрицательных температур. Это будет способствовать обеспечению долговечности стен здания.

Если мы поменяем в примере местами второй и третий слои – утеплим стену изнутри, то получим не одну, а две границы слоев в области отрицательных температур и наполовину промороженную кирпичную кладку. Убедитесь в этом самостоятельно, выполнив теплотехнический расчет стены. Напрашивающиеся выводы очевидны.

Уважающих труд автора прошу скачать файл с расчетом после подписки на анонсы статей в окне, размещенном наверху страницы или в окне в конце статьи!

Отопление и вентиляция жилых зданий

Учебно - методическое пособие к практическим занятиям

По дисциплине

«Инженерные сети. Теплогазоснабжение и вентиляция»

(примеры расчетов)

Самара 2011


Составители: Дежурова Наталья Юрьевна

Нохрина Елена Николаевна

УДК 628.81/83 07

Отопление и вентиляция жилых зданий: учебно-методическое пособие к контрольной работе и практическим занятиям по дисциплине «Инженерные сети. Теплогазоснабжение и вентиляция/ Сост.:
Н.Ю. Дежурова, Е.Н. Нохрина; Самарский гос. арх. - строит. ун-т. – Самара, 2011. – 80 с.

Изложена методика проведения практических занятий и выполнения контрольных работ по курсу «Инженерные сети и оборудование зданий» Теплогазоснабжение и вентиляция. Данное учебное пособие дает широкий выбор вариантов конструктивных решений наружных стен, вариантов планов типовых этажей, приведены справочные данные для проведения расчетов.

Предназначены для студентов дневной и заочной форм обучения
специальности 270102.65 «Промышленное и гражданское строительство», а также могут быть использованы студентами специальности 270105.65 «Городское строительство и хозяйство».


1 Требования к оформлению и содержание контрольной
работы (практических занятий) и исходные данные …………………..5


энергоэффективных зданий ……………………………………………11

3 Теплотехнический расчет наружных ограждающих конструкций….16

3.1 Теплотехнический расчет наружной стены (пример расчета)…..20


(пример расчета)……………………………………………………25

3.3 Теплотехнический расчет чердачного перекрытия
(пример расчета) …………………………………………………...26

4 Расчет теплопотерь помещениями здания …………………………....28

4.1 Расчет потерь теплоты помещениями здания (пример расчета)…34

5 Разработка системы центрального отопления ………………………..44

6 Расчет нагревательных приборов ……………………………………..46

6.1 Пример расчета нагревательных приборов ………………………50

7 Конструктивные решения вентиляции жилого дома ………………..55

7.1 Аэродинамический расчет естественной вытяжной

вентиляции ………………………………………………………...59

7.2 Расчет каналов естественной вентиляции ……………………….62

Библиографический список …………………………………………….66

Приложение А Карта зон влажности …………………….…………….67

Приложение Б Условия эксплуатации ограждающих конструкций
в зависимости от влажностного режима помещений и зон влажности …………………………………………68

Приложение В Теплофизические характеристики материалов …….. ..69

Приложение Г Варианты секций типового этажа …………………...70

Приложение Д Значения коэффициента затекания воды в приборных узлах с радиаторами секционными и панельными …..75

Приложение Е Тепловой поток 1 м открыто проложенных вертикальных гладких металлических труб, окрашенных масляной краской, q , Вт/м ……………………………………….76

Приложение Ж Таблица для расчета круглых стальных воздуховодов при t в = 20 ºС …………………………………………..77

Приложение З Поправочные коэффициенты на потери давления на трение, учитывающие шероховатость материала
воздуховодов ………………………………………….78

Приложение И Коэффициенты местных сопротивлений для различных

элементов воздуховодов …………………………….79


1 Требования к оформлению и содержание контрольной
работы (практических занятий) и исходные данные

Контрольная работа состоит из расчетно-пояснительной записки и графической части.

Все необходимые исходные данные принимаются по таблице 1 в соответствии с последней цифрой шифра студента.

Расчетно-пояснительная записка содержит следующие разделы:

1. Климатические данные

2. Выбор ограждающих конструкций и их теплотехнический
расчет

3. Расчет теплопотерь помещениями здания

4. Разработка схемы центрального отопления (размещение нагревательных приборов, стояков, магистралей и узла управления)

5. Расчет нагревательных приборов

6. Конструктивное решение системы естественной вентиляции

7. Аэродинамический расчет системы вентиляции.

Пояснительная записка выполняется на листах формата А4 или тетради в клетку.

Графическая часть выполняется на миллиметровочной бумаге, вклеивается в тетрадь и содержит:

1. План секции типового этажа М 1:100 (см. приложение)

2. План подвала М 1:100

3. План чердака М 1:100

4. Аксонометрическая схема системы отопления М 1:100.

План подвала и чердака вычерчиваются на основании плана
типового этажа.

Контрольная работа предусматривает расчет двухэтажного жилого дома, расчеты производятся для одной секции. Система отопления – однотрубная с верхней разводкой, тупиковая.

Конструктивное решение перекрытий над неотапливаемым подвалом и теплым чердаком принять по аналогии с примером расчета.

Климатические характеристики района строительства приведенные в таблице 1, выписываются из СНиП 23-01-99* Строительная климатология :

1) средняя температура наиболее холодной пятидневки обеспеченностью 0,92, (табл. 1 графа 5);

2) средняя температура отопительного периода (табл. 1
графа 12);

3) продолжительность отопительного периода (табл. 1
графа 11);

4) максимальная из средних скоростей ветра по румбам за январь (талб. 1 графа 19).

Теплофизические характеристики материалов ограждения принимаются в зависимости от условий эксплуатации конструкции, которые определяются влажностным режимом помещения и зоной влажности места строительства.

Влажностный режим жилого помещения принимаем нормальным , исходя из заданной температуры +20 ºС и относительной влажности внутреннего воздуха 55 %.

По карте приложение А и приложение Б определяем условия
эксплуатации ограждающих конструкций. Далее по приложению В принимаем основные теплофизические характеристики материалов слоев ограждения, а именно коэффициенты:

теплопроводности , Вт/(м·ºС);

теплоусвоения , Вт/(м 2 ·ºС);

паропроницаемости , мг/(м·ч·Па).


Таблица 1

Исходные данные для выполнения контрольной работы

Исходные данные Численные значения в зависимости от последней цифры шифра
Номер варианта плана секции типового этажа (приложение Г)
Высота этажа (от пола до пола) 2,7 3,0 3,1 3,2 2,9 3,0 3,1 2,7 3,2 2,9
Вариант конструкции наружной стены (таблица 2)
Город Параметры Москва Санкт-Петербург Калининград Чебоксары Нижний Новгород Воронеж Саратов Волгоград Оренбург Пенза
, ºС -28 -26 -19 -32 -31 -26 -27 -25 -31 -29
, ºС -3,1 -1,8 1,1 -4,9 -4,1 -3,1 -4,3 -2,4 -6,3 -4,5
, сут
, м/с 4,9 4,2 4,1 5,0 5,1 5,1 5,6 8,1 5,5 5,6
Ориентация по сторонам света С Ю З В СВ СЗ ЮВ ЮЗ В З
Толщина междуэтажного перекрытия 0,3 0,25 0,22 0,3 0,25 0,22 0,3 0,25 0,22 0,3
Кухни с плитой двухкомфорочной трехкомфорочной четырехкомфорочной + - - - + - - - + + - - - + - - - + + - - - + - + - - - + -

Размер окон 1,8 х 1,5 (для жилых комнат); 1,5 х 1,5 (для кухни)

Размер наружной двери 1,2 х 2,2

Таблица 2

Варианты конструктивных решений наружных стен

Вариант 1 1 слой – известково-песчаный раствор; 2 слой – монолитный керамзитобетон
Вариант 2 1 слой – известково-песчаный раствор; 2 слой – монолитный керамзитобетон ; 3 слой – цементно-песчаный раствор; 4 слой – фактурный слой фасадной системы
Вариант 3 1 слой–известково-песчаный раствор; 2 слой – монолитный керамзитобетон 3 слой – цементно-песчаный раствор; 4 слой – фактурный слой фасадной системы
Вариант 4 1 слой – известково-песчаный раствор; 2 слой – кладка из силикатного кирпича; 3 слой – монолитный керамзитобетон
Вариант 5 1слой–известково-песчаный раствор; 2 слой – кладка из керамического кирпича; 3 слой – монолитный керамзитобетон, ; 4 слой – цементно-песчаный раствор; 5 слой – фактурный слой фасадной системы
Вариант 6
Вариант 7 1 слой – известково-песчаный раствор; 2 слой – монолитный керамзитобетон, ; 3 слой – кладка из керамического кирпича
Вариант 8 1 слой – известково-песчаный раствор; 2 слой – монолитный керамзитобетон,
Вариант 9 1 слой – известково-песчаный раствор; 2 слой – монолитный керамзитобетон, ; 3 слой – кладка из силикатного кирпича
Вариант 10 1 слой – известково-песчаный раствор; 2 слой – кладка из силикатного кирпича; 3 слой – монолитный керамзитобетон, ; 4 слой – кирпичная кладка из керамического кирпича

Таблица 3

Значения коэффициента теплотехнической однородности

№ п/п Вид конструкции наружной стены r
Однослойные несущие наружные стены 0,98 0,92
Однослойные самонесущие наружные стены в монолитно-каркасных зданиях 0,78 0,8
Двухслойные наружные стены с внутренним утеплителем 0.82 0,85
Двухслойные наружные стены с невентилируемыми фасадными системами типа ЛАЭС 0,92 0,93
Двухслойные наружные стены с вентилируемым фасадом 0,76 0,8
Трёхслойные наружные стены с использованием эффективных утеплителей 0,84 0,86

2 Конструктивные решения наружных стен
энергоэффективных зданий

Конструктивные решения наружных стен энергоэффективных зданий, применяемые при строительстве жилых и общественных
сооружений, можно разделить на 3 группы (рис.1):

1) однослойные;

2) двухслойные;

3) трехслойные.

Однослойные наружные стены выполняются из ячеистобетонных блоков, которые, как правило, проектируют самонесущими с поэтажным опиранием на элементы перекрытия, с обязательной защитой от внешних атмосферных воздействий путем нанесения штукатурки,
облицовки и т.д. Передача механических усилий в таких конструкциях осуществляется через железобетонные колонны.

Двухслойные наружные стены содержат несущий и теплоизоляционный слои. При этом утеплитель может быть расположен как
снаружи, так и изнутри.

В начале реализации программы энергосбережения в Самарской области в основном применялось внутреннее утепление. В качестве теплоизоляционного материала использовались пенополистирол и плиты из штапельного стекловолокна «URSA». Со стороны помещения утеплители защищались гипсокартоном или штукатуркой. Для
защиты утеплителей от увлажнения и накопления влаги устанавливалась пароизоляция в виде полиэтиленовой пленки.

При дальнейшей эксплуатации зданий выявилось много дефектов, связанных с нарушением воздухообмена в помещениях, появлением темных пятен, плесени и грибков на внутренних поверхностях наружных стен. Поэтому в настоящее время внутреннее утепление используется лишь при установке приточно-вытяжной механической вентиляции. В качестве утеплителей применяются материалы с низким водопоглощением, например, пеноплекс и напыляемый пенополиуретан.

Системы с наружным утеплением имеют ряд существенных
преимуществ. К ним относятся: высокая теплотехническая однородность, ремонтопригодность, возможность реализации архитектурных решений различной формы.

В практике строительства находят применение два варианта
фасадных систем: с наружным штукатурным слоем; с вентилируемым воздушным зазором.

При первом варианте исполнения фасадных систем в качестве
утеплителей в основном используются плиты пенополистирола.
Утеплитель от внешних атмосферных воздействий защищен базовым клеевым слоем, армированной стеклосеткой и декоративным слоем.



Рис. 1. Виды наружных стен энергоэффективных зданий:

а - однослойная, б - двухслойные, в - трехслойные;

1 – штукатурка; 2 – ячеистый бетон;

3 – защитный слой; 4 – наружная стена;

5 – утеплитель; 6 – фасадная система;

7 – ветрозащитная мембрана;

8 – вентилируемый воздушный зазор;

11 – облицовочный кирпич; 12 – гибкие связи;

13 – керамзитобетонная панель; 14 – фактурный слой.


В вентилируемых фасадах используется лишь негорючий утеплитель в виде плит из базальтового волокна. Утеплитель защищен от
воздействия атмосферной влаги фасадными плитами, которые крепятся к стене с помощью кронштейнов. Между плитами и утеплителем предусматривается воздушный зазор.

При проектировании вентилируемых фасадных систем создается наиболее благоприятный тепловлажностный режим наружных стен, так как водяные пары, проходящие через наружную стену, смешиваются с наружным воздухом, поступающим через воздушную прослойку, и выбрасываются на улицу через вытяжные каналы.

Трехслойные стены, возводимые ранее, применялись, в основном, в виде колодцевой кладки. Они выполнялись из мелкоштучных изделий, расположенных между наружным и внутренним слоями утеплителя. Коэффициент теплотехнической однородности конструкций относительно невелик (r < 0,5) из-за наличия кирпичных перемычек. При реализации в России второго этапа энергосбережения достичь требуемых значений приведенного сопротивления теплопередаче с помощью
колодцевой кладки не представляется возможным.

В практике строительства широкое применение нашли трехслойные стены с использованием гибких связей, для изготовления которых применяется стальная арматура, с соответствующими антикоррозионными свойствами стали или защитных покрытий. В качестве внутреннего слоя используется ячеистый бетон, а теплоизоляционных материалов – пенополистирол, минеральные плиты и пеноизол. Облицовочный слой выполняется из керамического кирпича.

Трехслойные бетонные стены при крупнопанельном домостроении применяются давно, но с более низким значением приведенного
сопротивления теплопередаче. Для повышения теплотехнической
однородности панельных конструкций необходимо использовать
гибкие стальные связи в виде отдельных стержней или их комбинаций. В качестве промежуточного слоя в таких конструкциях чаще применяется пенополистирол.

В настоящее время широкое применение находят трехслойные
сэндвич-панели для строительства торговых центров и промышленных объектов.

В качестве среднего слоя в таких конструкциях применяются
эффективные теплоизоляционные материалы – минвата, пенополистирол, пенополиуретан и пеноизол. Трехслойные ограждающие конструкции отличаются неоднородностью материалов в сечении, сложной геометрией и стыками. По конструктивным причинам для образования связей между оболочками необходимо, чтобы более прочные материалы проходили через теплоизоляцию или заходили в нее, нарушая тем самым однородность теплоизоляции. В этом случае образуются так называемые мостики холода. Типичными примерами таких мостиков холода могут служить обрамляющие ребра в трехслойных панелях с эффективным утеплением жилых зданий, угловое крепление деревянным брусом трехслойных панелей с облицовками из древесностружечной плиты и утеплителями и т.д.


3 Теплотехнический расчет наружных ограждающих конструкций

Приведенное сопротивление теплопередаче ограждающих конструкций R 0 следует принимать в соответствии с заданием на проектирование, но не менее требуемых значений R 0 тр, определяемых, исходя из санитарно-гигиенических условий, по формуле (1), и условий энергосбережения по таблице 4.

1. Определяем требуемое сопротивление теплопередаче ограждения, исходя из санитарно-гигиенических и комфортных условий:

(1)

где n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху, таблица 6 ;

Расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92 ;

Нормируемый температурный перепад, °С, таблица 5 ;

Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 7 , Вт/(м 2 ·ºС).

2. Определяем требуемое приведенное сопротивление теплоотдаче ограждения, исходя из условия энергосбережения .

Градусосутки отопительного периода (ГСОП) следует определять по формуле:

ГСОП= , (2)

где средняя температура, ºС, и продолжительность отопительного периода со средней суточной температурой воздуха 8 ºС . Величина требуемого приведенного сопротивления теплопередаче определяется по табл. 4

Таблица 4

Требуемоеприведенное сопротивление теплопередаче

ограждающих конструкций зданий

Здания и помещения Градусосутки отопительного периода, °С·сут. Приведенное сопротивление теплопередаче ограждающих конструкций, (м 2 ·°С)/Вт:
стен покрытий и перекрытий над проездами перекрытий чердачных, над холодными подпольями и подвалами окон и балконных дверей
Жилые, лечебно-профилактические и детские учреждения, школьные интернаты. 2,1 2,8 3,5 4,2 4,9 5,6 3,2 4,2 5,2 6,2 7,2 8,2 2,8 3,7 4,6 5,5 6,4 7,3 0,30 0,45 0,60 0,70 0,75 0,80
Общественные, кроме указанных выше, административные и бытовые, за исключением помещений с влажным или мокрым режимом 1,6 2,4 3,0 3,6 4,2 4,8 2,4 3,2 4,0 4,8 5,6 6,4 2,0 2,7 3,4 4,1 4,8 5,5 0,30 0,40 0,50 0,60 0,70 0,80
Производственные с сухим и нормальным режимами 2,0 2,5 3,0 3,5 4,0 4,5 1,4 1,8 2,2 2,6 3,0 3,4 0,25 0,30 0,35 0,40 0,45 0,50
Примечания: 1. Промежуточные значения R 0 тр следует определять интерполяцией. 2. Нормы сопротивления теплопередаче светопрозрачных ограждающих конструкций для помещений производственных зданий с влажным и мокрым режимами, с избытками явного тепла от 23 Вт/м 3 , а также для помещений общественных, административных и бытовых зданий с влажным или мокрым режимами следует принимать как для помещений с сухим и нормальным режимами производственных зданий. 3. Приведенное сопротивление теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше сопротивления теплопередаче светопрозрачной части этих изделий. 4. В отдельных обоснованных случаях, связанных с конкретными конструктивными решениями заполнения оконных и других проемов, допускается применять конструкции окон и балконных дверей с приведенным сопротивлением теплопередаче на 5 % ниже установленного в таблице.

Величины приведенного сопротивления теплопередаче отдельных ограждающих конструкций следует принимать равными не ниже
значений, определенных по формуле (3) для стен жилых и общественных зданий, либо по формуле (4) – для остальных ограждающих
конструкций:

(3)

(4)

где – нормируемые сопротивления теплопередаче, соответствующие требованиям второго этапа энергосбережения, (м 2 ·°С)/Вт.

3. Находим приведенное сопротивление теплопередаче
ограждающей конструкции по формуле

, (5)

где R 0 усл.

r – коэффициент теплотехнической однородности, определяемый согласно таблице 2.

Определяем величину R 0 усл для многослойной наружной стены

(м 2 ·°С)/Вт, (6)

где R к – термическое сопротивление ограждающей конструкции, (м 2 ·°С)/Вт;

– коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции, определяемый по таблице 7 , Вт/(м 2 ·°С); 23 Вт/(м 2 ·°С).

(м 2 ·°С)/Вт, (7)

где R 1 , R 2 , …R n – термические сопротивления отдельных слоев конструкции, (м 2 ·°С)/Вт.

Термическое сопротивление R , (м 2 ·°С)/Вт, слоя многослойной
ограждающей конструкции следует определять по формуле

где толщина слоя, м;

Расчётный коэффициент теплопроводности материала слоя,

Вт/(м·°С) (приложение В).

Величину r предварительно задаем в зависимости от конструкции проектируемой наружной стены.

4. Сравниваем сопротивление теплопередаче с требуемыми значениями, исходя из комфортных условий и условий энергосбережения, выбирая большее значение .

Должно соблюдаться неравенство

Если оно выполняется, то конструкция отвечает теплотехническим требованиям. В противном случае нужно увеличить толщину утеплителя и повторить расчет.

По фактическому сопротивлению теплопередаче R 0 усл находят
коэффициент теплопередачи ограждающей конструкции K, Вт/(м 2 ·ºС), по формуле

Теплотехнический расчет наружной стены (пример расчета)

Исходные данные

1. Район строительства – г. Самара.

2. Средняя температура наиболее холодной пятидневки обеспеченностью 0,92 t н 5 = -30 °С.

3. Средняя температура отопительного периода = -5,2 °С.

4. Продолжительность отопительного периода 203 сут.

5. Температура воздуха внутри здания t в =20 °С.

6. Относительная влажность воздуха =55 %.

7. Зона влажности – сухая (приложение А).

8. Условия эксплуатации ограждающих конструкций – А
(приложение Б).

В таблице 5 показан состав ограждения, а на рисунке 2 показан порядок расположения слоев в конструкции.

Порядок расчета

1. Определяем требуемое сопротивление теплопередаче наружной стены, исходя из санитарно-гигиенических и комфортных
условий:

где n – коэффициент, принимаемый в зависимости от положения
наружной поверхности ограждающей конструкции по отношению к наружному воздуху; для наружных стен n = 1;

Расчетная температура внутреннего воздуха, °С;

Расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки
обеспеченностью 0,92 ;

Нормативный температурный перепад, °С, таблица 5 , для наружных стен жилых зданий 4 °С;

Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принимаемый по табл. 7 , 8,7 Вт/(м 2 ·ºС).

Таблица 5

Состав ограждения

2. Определяем требуемое приведенное сопротивление теплопередаче наружной стены, исходя из условия энергосбережения. Градусосутки отопительного периода (ГСОП) определяем по формуле

ГСОП= = (20+5,2)·203 = 5116 (ºС·сут);

где средняя температура, ºС, и продолжительность отопительного периода со средней суточной температурой воздуха 8 ºС

(м 2 ·ºС)/Вт.

Требуемое приведенное сопротивление теплопередаче
определяем по табл. 4 методом интерполяции.

3. Из двух значений 1,43 (м 2 ·ºС)/Вт и 3,19 (м 2 ·ºС)/Вт

принимаем наибольшее значение 3,19 (м 2 ·ºС)/Вт.

4. Определяем требуемую толщину утеплителя из условия .

Приведенное сопротивление теплопередаче ограждающей конструкции определяется по формуле

где R 0 усл. – сопротивление теплопередаче глади наружной стены без учёта влияния наружных углов, стыков и перекрытий, оконных откосов и теплопроводных включений, (м 2 ·°С)/Вт;

r – коэффициент теплотехнической однородности, зависящий от конструкции стены определяемый согласно таблице 2.

Принимаем для двухслойной наружной стены с
наружным утеплителем, см. табл. 3.

(м 2 ·°С)/Вт

6. Определяем толщину утеплителя

М - стандарстная величина утеплителя.

Принимаем стандартную величину.

7. Определяем приведенные сопротивления теплопередачи
ограждающих конструкций, исходя из стандартной толщины утеплителя

(м 2 ·°С)/Вт

(м 2 ·°С)/Вт

Должно соблюдаться условие

3,38 > 3,19 (м 2 ·°С)/Вт - условие выполнено

8. По фактическому сопротивлению теплопередачи ограждающей конструкции , находим коэффициент теплопередачи наружной стены

Вт/(м 2 ·°С)

9. Толщина стены

Окна и балконные двери

По таблице 4 и по ГСОП = 5116 ºС·сут находим для окон и балконных дверей (м 2 ·°С)/Вт

Вт/(м 2 ·°С).

Наружные двери

В здании принимаем наружные двери двойные с тамбуром
между ними (м 2 ·°С)/Вт.

Коэффициент теплопередачи наружной двери

Вт/(м 2 ·°С).


3.2 Теплотехнический расчет чердачного перекрытия
(пример расчета)

В таблице 6 приведен состав конструкции чердачного перекрытия, а на рисунке 3 порядок расположения слоев в конструкции.

Таблица 6

Состав конструкции

№ п/п Наименование Толщина , м Плотность , кг/м 3 Коэффициент теплопровод-ности , Вт/(м о С)
Железобетонная плита перекрытия пустотная 0,22 1,294
Затирка цементно-песчаным раствором 0,01 0,76
Гидроизоляция – один слой техноэласта ЭПП 0,003 0,17
Керамзитобетон 0,05 0,2
Стяжка из цементно-песчаного раствора 0,03 0,76

Теплотехнический расчет перекрытия теплого чердака

Для рассматриваемого жилого здания:

14 ºС; 20 ºС; -5,2 ºС; 203 сут; - 30 ºС;
ГСОП = 5116 ºС·сут.

Определяем

Рис. 1.8.1
для перекрытия теплого чердака жилого здания по табл. 4 =4,76 (м 2 ·°С)/Вт.

Определяем величину требуемого сопротивления теплопередаче перекрытия теплого чердака , согласно .

Где

4,76 · 0,12 = 0,571 (м 2 ·°С)/Вт.

где 12 Вт/(м 2 ·ºС) для чердачных перекрытий, r = 1

1/8,7+0,22/1,294+0,01/0,76+

0,003/0,17+0,05/0,2+ 0,03/0,76+

1/12 = 0,69 (м 2 о С)/Вт.

Коэффициент теплопередачи перекрытия теплого чердака

Вт/(м 2 ·°С)

Толщина чердачного перекрытия

3.3 Теплотехнический расчет перекрытия над
неотапливаемым подвалом

В таблице 7 приведен состав ограждения. На рисунке 4 показан порядок расположения слоев в конструкции.

Для перекрытий над неотапливаемым подвалом температура воздуха в подвале принимается 2 ºС; 20 ºС; -5,2 ºС 203 сут; ГСОП = 5116 ºС·сут;

Требуемое сопротивление теплопередачи определяем по табл. 4 по величине ГСОП

4,2 (м 2 ·°С)/Вт.

Согласно , где

4,2 · 0,36 = 1,512 (м 2 ·°С)/Вт.


Таблица 7

Состав конструкции

Определяем приведенное сопротивление конструкции:

где 6 Вт/(м 2 ·ºС) табл. 7, - для перекрытий над неотапливаемым подвалом, r = 1

1/8,7+0,003/0,38+0,03/0,76+0,05/0,044+0,22/1,294+1/6=1,635(м 2 о С)/Вт.

Коэффициент теплопередачи перекрытия над неотапливаемым подвалом

Вт/(м 2 ·°С)

Толщина перекрытия над неотапливаемым подвалом


4 Расчет теплопотерь помещениями здания

Расчет теплопотерь наружными ограждениями проводится для каждого помещения первого и второго этажа для половины здания.

Теплопотери отапливаемых помещений состоят из основных и добавочных. Потери тепла помещениями здания определяются как сумма теплопотерь через отдельные ограждающие конструкции
(стены, окна, потолок, пол над неотапливаемым подвлом) с округлением до 10 Вт. ; H – 16 ºС.

Длины ограждающих конструкций принимаются по плану этажа. При этом толщина наружных стен должна быть вычерчена в соответствии с данными теплотехнического расчета. Высота ограждающих конструкций (стен, окон, дверей) принимается по исходным данным задания. При определении высоты наружной стены следует учитывать толщину конструкции пола или чердачного перекрытия (см. рис. 5).

;

где высота наружной стены соответственно первого и
второго этажей;

Толщины перекрытий над неотапливаемым подвалом и

чердаком (принимаются из теплотехнического расчета);

Толщина междуэтажного перекрытия.

а
б

Рис. 5. Определение размеров ограждающих конструкций при расчете теплопотерь помещения (НС – наружных стен,
Пл – пола, Пт – потолка, О – окон):
а – разрез здания; б – план здания.

Помимо основных потерь тепла , необходимо учитывать
потери теплоты на нагрев инфильтрационного воздуха. Инфильтрационный воздух поступает в помещение с температурой, близкой к
температуре наружного воздуха. Поэтому в холодный период года его необходимо нагревать до температуры помещения.

Расход теплоты для нагрев инфильтрационного воздуха принимается по формуле

где удельный расход удаляемого воздуха, м 3 /ч; для жилых
зданий принимается 3 м 3 /ч на 1 м 2 площади пола жилого помещения и кухни;

Для удобства расчета теплопотерь необходимо пронумеровать все помещения здания. Нумерацию следует произыводить поэтажно, начиная, например, с угловых комнат. Помещениям первого этажа присваиваются номера 101, 102, 103 …, второго – 201, 202, 203 … . Первая цифра указывает, на каком этаже находится рассматриваемое помещение. В задании студентам дается план типового этажа, поэтому над комнатой 101 располагается комната 201 и т.п. Лестничные клетки обозначаются ЛК-1, ЛК-2.

Наименование ограждающих конструкций целесообразно
обозначать сокращенно: наружная стена – НС, двойное окно – ДО, балконная дверь – БД, внутренняя стена – ВС, потолок – Пт, пол – Пл, наружная дверь НД.

Записывается сокращенно ориентация ограждающих конструкций обращенных на север – С, восток – В, юго-запад – ЮЗ, северо-запад – СЗ и т.д.

При вычислении площади стен удобнее не вычитать из них плоащдь окон; таким образом, теплопотери через стены получается несколько завышеннными. При вычислении же теплопотерь через окна величину коэффициента теплопередачи принимают равной . Аналогично поступают и в том случае, если в наружной стене имеются балконные двери.

Расчет теплопотерь производят для помещений первого этажа, затем - второго. Если помещение имеет планировку и ориентацию по сторонам света, аналогичную с ранее рассчитанным помещением, то повторно расчет теплопотерь не производится, а в бланке теплопотерь напротив номера помещения записывается: «То же, что и для №»
(указывается номер ранее рассчитанного аналогичного помещения) и итоговое значение теплопотерь для этого помещения.

Теплопотери лестничной клетки определяют в целом по всей ее высоте, как для одного помещения.

Теплопотери через строительные ограждения между смежными отапливаемыми помещениями, например, через внутренние стены, следует учитывать только при разности расчетных температур внутреннего воздуха этих помещений более 3 ºС.


Таблица 8

Теплопотери помещений

№ помещения Наименование помещения и его внутренняя температура Характеристика ограждения Коэффициент теплопередачи k, Вт/(м 2о С) Расчетная разность температур (t в - t н5)·n Добавочные потери теплоты Сумма добавочных тепло-потерь Потери тепла через ограждения Q o , Вт Расход тепла на нагрев инфильтрационного воздуха Q инф , Вт Бытовые тепловыделе- ния Q быт , Вт Теплопотери помещения Q пом , Вт
наименование ориентация размеры a x b, м площадь поверхности F, м 2 на ориентацию прочие

Тепло в доме напрямую зависит от многих факторов, в том числе от толщины утеплителя. Чем больше его толщина, тем лучше ваш дом будет защищен от холода и промерзания, и тем меньше вы будете платить за отопление.

Посчитайте стоимость 1м2 и 1 м3 утеплителя в пачке и вы увидите, что утеплять свой дом минеральной ватой на основе кварца ISOVER выгодно. Сэкономленные деньги можно потратить на утепление своего дома еще одним слоем минваты на основе кварца, тем самым сделать свой дом теплее, повысить его класс энергоэффективности и сократить счета за отопление.

В России только ISOVER производит как базальтовую вату из горных пород, так и природные утеплители на основе кварца для утепления частных домов, дач, квартир и других построек. Поэтому мы готовы предложить для каждой конструкции свой материал.


Для понимания чем лучше утеплить дом нужно учесть несколько факторов:
- Климатические особенности региона, в котором расположен дом.
- Тип конструкции, которую необходимо утеплить.
- Ваш бюджет и понимание хотите ли вы самое лучшее решение, утеплитель с оптимальным соотношением «цена-качество» или просто базовое решение.

Минеральная вата ISOVER на основе кварца отличается повышенной упругостью, поэтому никакие крепежи и дополнительные балки вам не понадобятся. А главное, благодаря формостабильности и упругости нет мостиков холода, соответственно тепло не будет уходить из дома и о промерзании стен можно забыть раз и навсегда.

Хотите, чтобы стены не промерзали и тепло всегда оставалось в доме? Обращайте внимание на 2 ключевые характеристики утеплителя для стен:

1. КОЭФФИЦИЕНТ ТЕПЛО ПРОВОДНОСТИ

2. ФОРМОСТАБИЛЬНОСТЬ

Узнайте какой материал ISOVER выбрать, чтобы сделать дом теплее и платить за отопление до 67% меньше. С помощью калькулятора ISOVER вы сможете рассчитать свою выгоду.

Сколько утеплителя и какой толщины нужно для вашего дома?
- Сколько это стоит и где выгоднее купить утеплитель?
- Сколько денег вы ежемесячно и ежегодно сэкономите на отоплении благодаря утеплению?
- На сколько ваш дом станет теплее с ISOVER?
- Как повысить энергоэффективность конструкций?

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). "Тепловая защита зданий". Актуализированная редакция от 2012 года .
  • СНиП 23-01-99* (СП 131.13330.2012). "Строительная климатология". Актуализированная редакция от 2012 года .
  • СП 23-101-2004. "Проектирование тепловой защиты зданий" .
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). "Здания жилые и общественные. Параметры микроклимата в помещениях" .
  • Пособие. Е.Г. Малявина "Теплопотери здания. Справочное пособие" .

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна - 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года t int = 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха t ext , определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна z ht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период t ht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком "Х", так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.


Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

D d = ( t int - t ht ) z ht = (20 + 4,1)215 = 5182°С×сут

Примечание: также градусо-сутки имеют обозначение - ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

R req = a×D d + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd - градусо-сутки отопительного периода в Нижнем Новгороде,

a и b - коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 - коэффициент, принятый по таблице 6 для наружной стены;

t int = 20°С - значение из исходных данных;

t ext = -31°С - значение из исходных данных;

Δt n = 4°С - нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 в данном случае для наружных стен жилых зданий;

α int = 8,7 Вт/(м 2 ×°С) - коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем R req из условия энергосбережения и обозначаем его теперь R тр0 =3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λ i - расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R 1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R 3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R 4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина "Теплопотери здания. Справочное пособие"):

где: R int = 1/α int = 1/8,7 - сопротивление теплообмену на внутренней поверхности;

R ext = 1/α ext = 1/23 - сопротивление теплообмену на наружной поверхности, α ext принимается по таблице 14 для наружных стен;

ΣR i = 0,094 + 0,287 + 0,023 - сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 ):

где: λ ут - коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 ):

где: ΣR т,i - сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R 0 = 3,503м 2 × °С/Вт > R тр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно .

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае - это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи α ext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные