Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные



Одним из самых важных элементов для парокомпрессионной машины является . Он выполняет главный процесс холодильного цикла – отбор от охлаждаемой среды. Другие элементы холодильного контура, такие как конденсатор, расширительное устройство, компрессор и пр., только обеспечивают надежную работу испарителя, поэтому именно выбору последнего необходимо уделять должное внимание.

Из этого следует, что, подбирая оборудование для холодильной установки, необходимо начинать именно с испарителя. Многие начинающие ремонтники часто допускают типичную ошибку и начинают комплектацию установки с компрессора.

На рис. 1 представлена схема самой обычной парокомпрессионной холодильной машины. Ее цикл, заданный в координатах: давление Р и i . На рис. 1б точки 1-7 холодильного цикла, является показателем состояния холодильного агента (давления, температуры, удельного объема) и совпадает с аналогичным на рис. 1а (функции параметров состояния).

Рис. 1 – Схема и в координатах обычной парокомпрессионной машины: РУ расширительное устройство, Рk – давление конденсации, Ро – давление кипения.

Графическое изображение рис. 1б отображает состояние и функции холодильного агента, которые изменяются в зависимости от давления и энтальпии. Отрезок АВ на кривой рис. 1б характеризует хладагент в состоянии насыщенного пара. Его температура соответствует температуре начала кипения. Доля пара хладагента в составляет 100%, а перегрев близок к нулю. В правой части от кривой АВ хладагент имеет состояние (температура хладагента больше температуры кипения).

Точка В является критической для данного хладагента, поскольку отвечает той температуре, при которой вещество не может перейти в жидкое состояние, не зависимо от того, на сколько высоким будет давление. На отрезке ВС хладагент имеет состояние насыщенной жидкости, а в левой стороне – переохлажденной жидкости (температура хладагента меньше температуры кипения).

Внутри кривой АВС хладагент находится в состоянии парожидкостной смеси (доля пара в единице объема изменчива). Процесс, происходящий в испарителе (рис. 1б), отвечает отрезку 6-1 . Хладагент поступает в испаритель (точка 6) в состоянии кипящей парожидкостной смеси. При этом доля пара зависит от определенного холодильного цикла и составляет 10-30%.

На выходе из испарителя процесс кипения может не завершиться и точка 1 может не совпадать с точкой 7 . Если температура хладагента на выходе из испарителя больше температуры кипения, то получаем испаритель с перегревом. Его величина ΔТперегрев представляет собой разность температуры хладагента на выходе из испарителя (точка 1) и его температуры на линии насыщения АВ (точка 7):

ΔТперегрев=Т1 – Т7

Если точка 1 и 7 совпадают, то температура хладагента равна температуре кипения, а перегрев ΔТперегрев будет равен нулю. Таким образом, получим затопленный испаритель. Поэтому, при выборе испарителя вначале необходимо совершить выбор между затопленным испарителем и испарителем с перегревом.

Отметим, что при равных условиях затопленный испаритель более выгоден по интенсивности процесса отбора теплоты, чем с перегревом. Но следует учитывать то, что на выходе затопленного испарителя хладагент находится в состоянии насыщенного пара, а подавать влажную среду в компрессор нельзя. В противном случае возникает высокая вероятность появления гидроударов, которые будут сопровождаться механическим разрушением деталей компрессора. Получается, что если выбрать затопленный испаритель, то необходимо предусматривать дополнительную защиту компрессора от попадания в него насыщенного пара.

Если отдать предпочтение испарителю с перегревом, то не нужно заботиться о защите компрессора и попадания в него насыщенного пара. Вероятность возникновения гидравлических ударов будет возникать только в случае отклонения от требуемого показателя величины перегрева. В нормальных условиях эксплуатации холодильной установки величина перегрева ΔТперегрев должна находиться в пределах 4-7 К.

При снижении показателя перегрева ΔТперегрев , интенсивность отбора теплоты окружающей среды повышается. Но при чрезмерно низких значениях ΔТперегрев (менее 3К) возникает вероятность попадания в компрессор влажного пара, что может стать причиной появления гидравлического удара и, следовательно, повреждения механических узлов компрессора.

В обратном случае, при высоком показании ΔТперегрев (больше 10 К), это говорит о том, что в испаритель поступает недостаточное количество хладагента. Резко снижается интенсивность отбора теплоты от охлаждаемой среды и ухудшается тепловой режим компрессора.

При выборе испарителя возникает и другой вопрос, связанный с величиной температуры кипения хладагента в испарителе. Чтобы его решить вначале необходимо определить какую температуру охлаждаемой среды следует обеспечить для нормальной работы холодильной установки. Если в качестве охлаждаемой среды используется воздух, то кроме температуры на выходе из испарителя требуется учесть и влажность на выходе из испарителя. Теперь рассмотрим поведения температур охлаждаемой среды вокруг испарителя во время работы обычной холодильной установки (рис. 1а).

Чтобы не углубляться в данную тему потерями давлений на испарителе будем пренебрегать. Также будем считать, что происходящий теплообмен между хладагентом и окружающей средой осуществляется по прямоточной схеме.

На практике такую схему используют не часто, поскольку по эффективности теплообмена она уступает противоточной схеме. Но если один из теплоносителей имеет постоянную температуру, а показания перегрева невелики, то прямоток и противоток будут равнозначными. Известно, что среднее значение температурного напора не зависит от схемы движения потоков. Рассмотрение прямоточной схемы предоставит нам более наглядное представление о теплообмене, который происходит между хладагентом и охлаждаемой средой.

Для начала введем виртуальную величину L , равную длине теплообменного устройства (конденсатора или испарителя). Ее значение можно определить из следующего выражения: L=W/S , где W – соответствует внутреннему объему теплообменного устройства, в котором происходит циркуляция хладагента, м3; S – площадь поверхности теплообмена м2.

Если речь идет о холодильной машине, то равнозначная длина испарителя практически равняется длине трубки, в которой происходит процесс 6-1 . Поэтому ее наружная поверхность омывается охлаждаемой средой.

Вначале обратим внимание на испаритель, который выполняет роль воздухоохладителя. В нем процесс отбора теплоты от воздуха происходит в результате естественной конвекции или же при помощи принудительного обдува испарителя. Отметим, что в современных холодильных установках первый способ практически не используют, поскольку охлаждение воздуха путем естественной конвекции является малоэффективным.

Таким образом, будем предполагать, что воздухоохладитель оборудован вентилятором, который обеспечивает принудительный обдув испарителя воздухом и являет собой трубчато-ребристый теплообменный аппарат (рис. 2). Его схематическое изображение представлено на рис. 2б. рассмотрим основные величины, которые характеризуют процесс обдува.

Перепад температур

Перепад температур на испарителе рассчитывается следующим образом:

ΔТ=Та1- Та2 ,

где ΔТа находится в пределах от 2 до 8 К (для трубчато-ребристых испарителей с принудительным обдувом).

Другими словами, при нормальной работе холодильной установки воздух проходящий через испаритель должен охлаждаться не ниже 2 К и не выше 8 К.

Рис. 2 – Схема и температурные параметры охлаждения воздуха на воздухоохладителе:

Та1 и Та2 – температура воздуха на входе и выходе из воздухоохладителя;

  • FF – температура хладагента;
  • L – эквивалентная длина испарителя;
  • То – температура кипения хладагента в испарителе.

Максимальный температурный напор

Максимальный температурный напор воздуха на входе в испаритель определяется следующим образом:

DTмакс=Та1 – То

Данный показатель применяется при подборе воздухоохладителей, поскольку зарубежные производители холодильной техники предоставляют значения холодопроизводительности испарителей Qисп в зависимости от величины DTмакс . Рассмотрим метод подбора воздухоохладителя холодильной установки и определим расчетные значения DTмакс . Для этого приведем в пример общепринятые рекомендации по подбору значения DTмакс :

  • для морозильных камер DTмакс находится в пределах 4-6 К;
  • для камер хранения неупакованной продукции – 7-9 К;
  • для камер хранения герметично упакованной продукции – 10-14 К;
  • для установок кондиционирования воздуха – 18-22 К.

Степень перегрева пара на выходе из испарителя

Для определения степени перегрева пара на выходе из испарителя используют следующую форму:

F=ΔТперегр/DTмакс=(Т1-Т0)/(Та1-Т0) ,

где Т1 – температура пара хладагента на выходе из испарителя.

Данный показатель у нас практически не используют, но в зарубежных каталогах предусмотрено, что показания холодопроизводительности воздухоохладителей Qисп соответствует значению F=0,65.

Во время эксплуатации значение F принято принимать от 0 до 1. Предположим, что F=0 , тогда ΔТперегр=0 , а хладагент на выходе из испарителя будет иметь состояние насыщенного пара. Для данной модели воздухоохладителя фактическая холодопроизводительность будет на 10-15% больше показателя, приведенного в каталоге.

Если F>0,65 , то показатель холодопроизводительности для данной модели воздухоохладителя, должен быть меньше значения, приведенного в каталоге. Допустим, что F>0,8 , тогда фактическая производительность для данной модели будет на 25-30% больше значения, приведенного в каталоге.

Если F->1 , то холодопроизводительность испарителя Qисп->0 (рис.3).

Рис.3 – зависимость холодопроизводительности испарителя Qисп от перегрева F

Процесс, изображенный на рис.2б, характеризуют и другие параметры:

  • среднеарифметический температурный напор DTср=Таср-Т0 ;
  • средняя температура воздуха, которая проходит через испаритель Таср=(Та1+Та2)/2 ;
  • минимальный температурный напор DTмин=Та2-То .

Рис. 4 – Схема и температурные параметры, отображающие процесс на испарителе:

где Те1 и Те2 температура воды на входы и выходе испарителя;

  • FF – температура хладагента;
  • L – эквивалентная длина испарителя;
  • То – температура кипения хладагента в испарителе.
Испарители, в которых охлаждающей средой выступает жидкость, имеют те же температурные параметры, что и для воздухоохладителей. Цифровые значения температур охлаждаемой жидкости, которые необходимы для нормальной работы холодильной установки, будут иными, чем соответствующие параметры для воздухоохладителей.

Если перепад температур по воде ΔТе=Те1-Те2 , то для кожухотрубных испарителей ΔТе следует поддерживать в диапазоне 5±1 К, а для пластинчатых испарителей показатель ΔТе будет находиться в пределах 5±1,5 К.

В отличие от воздухоохладителей в охладителях жидкости необходимо поддерживать не максимальный, а минимальный температурный напор DTмин=Те2-То – разность между температурой охлаждаемой среды на выходе из испарителя и температурой кипения хладагента в испарителе.

Для кожухотрубных испарителей минимальный температурный напор DTмин=Те2-То следует поддерживать в пределах 4-6 К, а для пластинчатых испарителей – 3-5 К.

Заданный диапазон (разность между температурой охлаждаемой среды на выходе из испарителя и температурой кипения хладагента в испарителе) необходимо поддерживать по следующим причинам: при увеличении разности интенсивность охлаждения начинает снижаться, а при снижении повышается риск замерзания охлаждаемой жидкости в испарителе, что может стать причиной его механического разрушения.

Конструктивные решения испарителей

Независимо от способа применения различных и хладагентов, теплообменные процессы, происходящие в испарителе, подчиняются основному технологическому циклу холодопотребляющего производства, согласно которому создаются холодильные установки и теплообменные аппараты. Таким образом, чтобы решить задачу по оптимизации теплообменного процесса необходимо учитывать условия рациональной организации технологического цилка холодопотребляющего производства.

Как известно, охлаждение определенной среды возможно при помощи теплообменника. Его конструктивное решение следует выбирать согласно технологическим требованиям, которые предъявляются к данным устройствам. Особо важным моментом является соответствие устройства технологическому процессу термической обработки среды, что возможно при следующих условиях:

  • поддержание заданной температуры рабочего процесса и контроль (регулирование) над температурным режимом;
  • выбор материала устройства, согласно химическим свойствам среды;
  • контроль над продолжительностью пребывания среды в устройстве;
  • соответствие рабочих скоростей и давления.
Другим фактором, от которого зависит экономическая рациональность аппарата, является производительность. Прежде всего, на нее влияют интенсивность теплообмена и соблюдение гидравлических сопротивлений устройства. Выполнение этих условий возможно при следующих обстоятельствах:
  • обеспечение необходимой скорости рабочих сред для осуществления турбулентного режима;
  • создание наиболее подходящих условий для удаления конденсата, накипи, инея и пр.;
  • создание благоприятных условий для движения рабочих сред;
  • предотвращение возможных загрязнений устройства.
Другими важными требованиями также являются небольшой вес, компактность, простота конструкции, а также удобство монтажа и ремонта устройства. Для соблюдения этих правил следует учитывать такие факторы как: конфигурация поверхности нагрева, наличие и тип перегородок, способ размещения и крепления трубок в трубных решетках, габаритные размеры, устройство камер, днищ и пр.

На удобство эксплуатации и надежность устройства влияют такие факторы как прочность и герметичность разъемных соединений, компенсация температурных деформаций, удобства для обслуживания и ремонта устройства. Данные требования заложены в основу конструирования и выбора теплообменного агрегата. Главную роль в этом занимает обеспечение требуемого технологического процесса в холодопотребляющем производстве.

Для того, что выбрать правильное конструктивное решение испарителя необходимо руководствоваться следующими правилами. 1) охлаждение жидкостей лучше всего осуществлять при помощи трубчатого теплообменника жесткой конструкции или компактного пластинчатого теплообменника; 2) применение трубчато-ребристых устройств обусловлено следующими условиями: теплоотдача между рабочими средами и стенкой по обе стороны поверхности нагрева значительно отличаются. При этом оребрение необходимо устанавливать со стороны наименьшего коэффициента теплоотдачи.

Для увеличения интенсивности теплообмена в теплообменниках необходимо придерживаться таких правил:

  • обеспечение надлежащих условий по отводу конденсата в воздухоохладителях;
  • снижение толщины гидродинамического пограничного слоя путем повышения скорости движения рабочих тел (установка межтрубных перегородок и разбивка пучка трубок на ходы);
  • улучшение обтекания рабочими телами поверхности теплообмена (вся поверхность должна активно участвовать в процессе теплообмена);
  • соблюдение основных показателей температур, термических сопротивлений и пр.
Анализируя отдельные термические сопротивления можно выбрать наиболее оптимальный способ повысить интенсивность теплообмена (в зависимости от типа теплообменника и характера рабочих тел). В жидкостном теплообменнике поперечные перегородки рационально устанавливать только при нескольких ходах в трубном пространстве. При теплообмене (газа с газом, жидкости с жидкостью) количество жидкости, протекающее через межтрубное пространство, может быть надменно большим, и, в результате, показатель скорости достигнет тех пределов, что и внутри трубок, из-за чего установка перегородок будет нерациональна.

Улучшение теплообменных процессов является одним из основных процессов по совершенствованию теплообменного оборудования холодильных машин. В этом отношении проводятся исследования в области энергетики и химической техники. Это изучение режимных характеристик течения, турбулизация потока путем создания искусственных шероховатостей. Кроме того, ведется разработка новых поверхностей теплообмена, благодаря чему теплообменники станут более компактными.

Выбираем рациональный подход для расчета испарителя

При проектировании испарителя следует произвести конструктивный, гидравлический, прочностной, тепловой и технико-экономический расчет. Их выполняют в нескольких вариантах, выбор которых зависит от показателей эффективности: технико-экономического показателя, КПД и пр.

Чтобы произвести тепловой расчет поверхностного теплообменника необходимо решить уравнение теплопередачи и теплового баланса, с учетом определенных условий работы устройства (конструктивные размеры теплопередающих поверхностей, пределов изменения температур и схем, относительно движения охлаждающей и охлаждаемой среды). Чтобы найти решение этой задачу нужно применять правила, которые позволят получить результаты из исходных данных. Но из-за многочисленных факторов, найти общее решение для различных теплообменников невозможно. Вместе с этим существует много методов приближенного расчета, которые легко произвести в ручном или машинном варианте.

Современные технологии позволяют подобрать испаритель при помощи специальных программ. В основном они предоставляются производителями теплообменной аппаратуры и позволяют быстро подобрать необходимую модель. При использовании таких программ необходимо учитывать то, что они предполагают работу испарителя при стандартных условиях. Если фактические условия отличаются от стандартных, то производительность испарителя будет иной. Таким образом, желательно всегда проводить проверочные расчеты выбранной вами конструкции испарителя, относительно фактических условий его работы.

Методика подбора водоохлаждающих установок - чиллеров

Определить требуемую холодопроизводительность можно в соответствии с исходными данными по формулам (1) или (2) .

Исходные данные:

  • объемный расход охлаждаемой жидкости G (м3/час) ;
  • требуемая (конечная) температура охлажденной жидкости Тk (°С) ;
  • температура входящей жидкости Тн (°С) .
Формула расчета требуемой холодопроизводительности установки для :
  • (1) Q (кВт) = G x (Тн – Тk) x 1,163
Формула расчета требуемой холодопроизводительности установки для любой жидкости:
  • (2) Q (кВт) = G x (Тнж– Тkж) x Cpж x ρж / 3600
Cpж – охлаждаемой жидкости, кДж/(кг*°С),

ρж – плотность охлаждаемой жидкости, кг/м3.

Пример 1

Требуется холодопроизводительностью Qo=16 кВт. Температура воды на выходе Тк=5°С. Расход воды равен G=2000 л/ч. Температура окружающей среды 30°С.

Решение

1. Определяем недостающие данные.

Перепад температур охлаждаемой жидкости ΔТж=Тнж-Ткж=Qo х 3600/G х Срж x ρж = 16 x 3600/2 x 4,19 x 1000=6,8°С, где

  • G =2 м3/ч - расход воды;
  • Ср =4,19 кДж/(кг х °С) - удельная теплоемкость воды;
  • ρ =1000 кг/м3 - плотность воды.
2. Выбираем схему . Перепад температур ΔТж=6,8~7°С, выбираем . Если дельта температур больше 7 градусов, то используем .

3. Температура жидкости на выходе из Тк=5°С.

4. Выбираем водоохлаждающую установку, которая подходит по требуемой холодопроизводительности при температуре воды на выходе из установки 5°С и температуре окружающего воздуха 30°С.

После просмотра определяем, что водоохлаждающая установка ВМТ-20 удовлетворяет этим условиям. Холодопроизводительность 16.3 кВт, потребляемая мощность 7,7 кВт.

Пример 2

Имеется бак объемом V=5000 л, в который заливают воду с температурой Тнж =25°С. В течение 3 часов требуется охладить воду до температуры Ткж=8°С. Расчетная температура окружающего воздуха 30°С.

1. Определяем потребную холодопроизводительность.

  • перепад температур охлаждаемой жидкости ΔТж=Тн - Тк=25-8=17°С;
  • расход воды G=5/3=1,66 м3/ч
  • холодопроизводительность Qо=G х Ср х ρж х ΔТж/3600=1,66 х 4,19 х 1000 х 17/3600=32,84 кВт.
где Срж =4,19 кДж/(кг х°С) - удельная теплоемкость воды;
ρж =1000 кг/м3 - плотность воды.

2. Выбираем схему водоохлаждающей установки. Однонасосная схема без использования промежуточной емкости.
Перепад температур ΔТж =17>7°С, определяем кратность циркуляции охлаждаемой жидкости n =Срж х ΔTж/Ср х ΔТ=4,2х17/4,2x5=3,4
где ΔТ=5°С - температурный перепад в испарителе.

Тогда расчетный расход охлаждаемой жидкости G = G х n= 1,66 x 3,4=5,64 м3/ч.

3. Температура жидкости на выходе из испарителя Тк=8°С.

4. Выбираем водоохлаждающую установку, которая подходит по требуемой холодопроизводительноСти при температуре воды на выходе из установки 8°С и температуре окружающего воздуха 28°С После просмотра таблиц определяем, что холодопроизводительность установки ВМТ-36 при Токр.ср.=30°С холодопроизводительность 33,3 кВт, мощность 12,2 кВт.

Пример 3 . Для экструдеров, термопластавтомата (ТПА).

Требуется охлаждение оборудования (экструдер 2 шт., миксер горячего смешения 1 шт., ТПА 2 шт.) системой оборотного водоснабжения. В качестве применятся вода с температурой +12°С.

Экструдер в количестве 2шт . Расход ПВХ на одном составляет 100кг/час. Охлаждение ПВХ с +190°С до +40°С

Q (кВт) = (М (кг/час) х Сp (ккал/кг*°С) х ΔT х 1,163)/1000;

Q (кВт) = (200(кг/час) х 0.55 (ккал/кг*°С) х 150 х 1,163)/1000=19.2 кВт.

Миксер горячего смешения в количестве 1 шт. Расход ПВХ 780кг/час. Охлаждение с +120°С до +40°С:

Q (кВт) = (780(кг/час) х 0.55 (ккал/кг*°С) х 80 х 1,163)/1000=39.9 кВт.

ТПА (термопластавтомат) в количестве 2шт. Расход ПВХ на одном составляет 2,5 кг/час. Охлаждение ПВХ с +190°С до +40°С:

Q (кВт) = (5(кг/час) х 0.55 (ккал/кг*°С) х 150 х 1,163)/1000=0.5 кВт.

Итого получаем суммарную холодопроизводительность 59,6 кВт .

Пример 4. Методики расчета хладопроизводительности.

1. Теплоотдача материала

P = количество перерабатываемой продукции кг/час

K = ккал/кг ч (теплоемкость материала)

Пластики :

Металлы:

2. Учет горячего канала

Pr = мощность горячего канала в Квт

860 ккал/час = 1 КВт

K = поправочный коэфициент (обычно 0.3):

K = 0.3 для изолированного ГК

K = 0.5 для не изолированного ГК

3. Охлаждение масла для литьевой машины

Pm = мощность двигателя масляного насоса кВт

860 ккал/ч = 1 кВт

K = скоростной (обычно 0.5):

k = 0.4 для медленного цикла

k = 0.5 для среднего цикла

k = 0.6 для быстрого цикла

КОРРЕКЦИЯ МОЩНОСТИ ЧИЛЛЕРА (ОРИЕНТИРОВОЧНАЯ ТАБЛИЦА)

ТЕМПЕРАТУРА ОКРУЖАЮЩЕЙ СРЕДЫ (°C)

Приблизительный расчет мощности при отсутствии других параметров для тпа.

Усилие смыкания

Производительность (кг/час)

На масло (ккал/час)

На формы (ккал/час)

Всего (ккал/час)

Корректировочный коэфициент:

Например:

ТПА с усилием смыкания 300 тонн и с циклом 15 секунд (средний)

Приблизительная хладопроизводительность:

Масло: Q масла = 20,000 x 0.7 = 14,000 ккал/час = 16.3 КВт

Форма: Q формы = 12,000 x 0.5 = 6,000 ккал/час = 7 КВт

По материалам компании Илма Технолоджи

Материалы для литья пластмассы
Обозначение Название Плот-ность (23°С), г/см3 Технологические характеристики
Темп. экспл., °С Атмо-сферо-стойкость (УФ-излучение) Температура, °С
Между-народное Русское Min Мax Формы Пере-работки
ABS АБС Акрилонитрил бутадиен стирол 1.02 - 1.06 -40 110 Не стоек 40-90 210-240
ABS+PA АБС + ПА Смесь АБС-пластика и полиамида 1.05 - 1.09 -40 180 Удовл 40-90 240-290
ABS+PC АБС + ПК Смесь АБС-пластика и поликарбоната 1.10 - 1.25 -50 130 Не стоек 80-100 250-280
ACS АХС Сополимер акрилонитрила 1.06 - 1.07 -35 100 Хорошая 50-60 200
ASA АСА 1.06 - 1.10 -25 80 Хорошая 50-85 210-240
CA АЦЭ Ацетат целлюлозы 1.26 - 1.30 -35 70 Хорошая стойкость 40-70 180-210
CAB АБЦ Ацетобутират целлюлозы 1.16 - 1.21 -40 90 Хорошая 40-70 180-220
CAP АПЦ Ацетопропионат целлюлозы 1.19 - 1.40 -40 100 Хорошая 40-70 190-225
CP АПЦ Ацетопропионат целлюлозы 1.15 - 1.20 -40 100 Хорошая 40-70 190-225
CPE ПХ Полиэтилен хлорированный 1.03 - 1.04 -20 60 Не стоек 80-96 160-240
CPVC ХПВХ Хлорированный поливинхлорид 1.35 - 1.50 -25 60 Не стоек 90-100 200
EEA СЭА Сополимер этилена и этилен-акрилата 0.92 - 0.93 -50 70 Не стоек 60 205-315
EVA СЭВ Сополимер этилена и винилацетата 0.92 - 0.96 -60 80 Не стоек 24-40 120-180
FEP Ф-4МБ Cополимер тетрафторэтилена 2.12 - 2.17 -250 200 Высокая 200-230 330-400
GPPS ПС Полистирол общего назначения 1.04 - 1.05 -60 80 Не стоек 60-80 200
HDPE ПЭНД Полиэтилен высокой плотности 0.94 - 0.97 -80 110 Не стоек 35-65 180-240
HIPS УПС Ударопрочный полистирол 1.04 - 1.05 -60 70 Не стоек 60-80 200
HMWDPE ВМП Высоко-молекулярный полиэтилен 0.93 - 0.95 -269 120 Удовл. 40-70 130-140
In И Иономер 0.94 - 0.97 -110 60 Удовл. 50-70 180-220
LCP ЖКП Жидко-кристаллические полимеры 1.40 - 1.41 -100 260 Хорошая 260-280 320-350
LDPE ПЭВД Полиэтилен низкой плотности 0.91 - 0.925 -120 60 Не стоек 50-70 180-250
MABS АБС-прозрач Сополимер метилметакрилата 1.07 - 1.11 -40 90 Не стоек 40-90 210-240
MDPE ПЭСД Полиэтилен среднего давления 0.93 - 0.94 -50 60 Не стоек 50-70 180-250
PA6 ПА6 Полиамид 6 1.06 - 1.20 -60 215 Хорошая 21-94 250-305
PA612 ПА612 Полиамид612 1.04 - 1.07 -120 210 Хорошая 30-80 250-305
PA66 ПА66 Полиамид 66 1.06 - 1.19 -40 245 Хорошая 21-94 315-371
PA66G30 ПА66Ст30% Стекло-наполненный полиамид 1.37 - 1.38 -40 220 Высокая 30-85 260-310
PBT ПБТ Полибутилен-терефталат 1.20 - 1.30 -55 210 Удовл. 60-80 250-270
PC ПК Поликарбонат 1.19 - 1.20 -100 130 Не стоек 80-110 250-340
PEC ПЭК Полиэфир-карбонат 1.22 - 1.26 -40 125 Хорошая 75-105 240-320
PEI ПЭИ Полиэфиримид 1.27 - 1.37 -60 170 Высокая 50-120 330-430
PES ПЭС Полиэфир-сульфон 1.36 - 1.58 -100 190 Хорошая 110-130 300-360
PET ПЭТ Полиэтилен-терефталат 1.26 - 1.34 -50 150 Удовл. 60-80 230-270
PMMA ПММА Полиметил-метакрилат 1.14 - 1.19 -70 95 Хорошая 70-110 160-290
POM ПОМ Полифор-мальдегид 1.33 - 1.52 -60 135 Хорошая 75-90 155-185
PP ПП Полипропилен 0.92 - 1.24 -60 110 Хорошая 40-60 200-280
PPO ПФО Полифенилен-оксид 1.04 - 1.08 -40 140 Удовл. 120-150 340-350
PPS ПФС Полифенилен-сульфид 1.28 - 1.35 -60 240 Удовл. 120-150 340-350
PPSU ПАСФ Полифенилен-сульфон 1.29 - 1.44 -40 185 Удовл. 80-120 320-380
PS ПС Полистирол 1.04 - 1.1 -60 80 Не стоек 60-80 200
PVC ПВХ Поливинил-хлорид 1.13 - 1.58 -20 60 Удовл. 40-50 160-190
PVDF Ф-2М Фторопласт-2М 1.75 - 1.80 -60 150 Высокая 60-90 180-260
SAN САН Сополимер стирола и акрилонитрила 1.07 - 1.08 -70 85 Высокая 65-75 180-270
TPU ТЭП Термопластичные полиуретены 1.06 - 1.21 -70 120 Высокая 38-40 160-190

При расчете проектируемого испарителя определяют его теплопередающую поверхность и объем циркулирующего рассола или воды.

Теплопередающую поверхность испарителя находят по формуле:

где F – теплопередающая поверхность испарителя, м 2 ;

Q 0 – холодопроизводительность машины, Вт;

Dt m – для кожухотрубных испарителей это средняя логарифмическая разность между температурами хладоносителя и кипения холодильного агента, а для панельных испарителей – арифметическая разность между температурами выходящего рассола и кипения холодильного агента, 0 С;

– плотность теплового потока, Вт/м 2 .

Для приближенных расчетов испарителей пользуются значениями коэффициентов теплопередачи, полученными опытным путем в Вт/(м 2 ×К):

для аммиачных испарителей:

кожухотрубных 450 – 550

панельных 550 – 650

для фреоновых кожухотрубных испарителей с накатными ребрами 250 – 350.

Среднюю логарифмическую разность температур хладоносителя и кипения холодильного агента в испарителе рассчитывают по формуле:

(5.2)

где t Р1 и t Р2 – температуры хладоносителя на входе и выходе из испарителя, 0 С;

t 0 – температура кипения холодильного агента, 0 С.

Для панельных испарителей, благодаря большому объему бака и интенсивной циркуляции хладоносителя, его средняя температура может быть принята равной температуре на выходе из бака t Р2 . Поэтому для этих испарителей

Объем циркулирующего хладоносителя определяют по формуле:

(5.3)

где V Р – объем циркулирующего теплоносителя, м 3 /с;

с Р – удельная теплоемкость рассола, Дж/(кг× 0 С);

r Р – плотность рассола, кг/м 3 ;

t Р2 и t Р1 – температура теплоносителя соответственно при входе в охлаждаемое помещение и выходе из него, 0 С;

Q 0 – холодопроизводительность машины.

Величины с Р и r Р находят по справочным данным для соответствующего хладоносителя в зависимости от его температуры и концентрации.

Температура хладоносителя при прохождении его через испаритель понижается на 2 – 3 0 С.

Расчет испарителей для охлаждения воздуха в холодильных камерах

Для распределения испарителей, входящих в комплект холодильной машины, определяют требуемую теплопередающую поверхность по формуле:

где SQ – суммарный теплоприток на камеру;

К – коэффициент теплопередачи камерного оборудования, Вт/(м 2 ×К);

Dt – расчетная разность температур между воздухом в камере и средней температурой хладоносителя при рассольном охлаждении, 0 С.

Коэффициент теплопередачи для батареи принимают 1,5–2,5 Вт/(м 2 К), для воздухоохладителей – 12–14 Вт/(м 2 К).

Расчетную разность температур для батарей - 14–16 0 С, для воздухоохладителей - 9–11 0 С.

Количество приборов охлаждения для каждой камеры определяют по формуле:

где n – требуемое количество приборов охлаждения, шт.;

f – теплопередающая поверхность одной батареи или воздухоохладителя (принимают исходя из технической характеристики машины).

Конденсаторы

Различают два основных типа конденсаторов: с во­дяным и воздушным охлаждением. В холодильных установ­ках большой производительности используются также конденсаторы с водо-воздушным охлаждением, называемые испарительными.

В холодильных агрегатах для торгового холодильного оборудования чаще всего применяют конденсаторы воздушного охлаждения. По сравнению с конденсатором водяного охлаждения они экономичны в работе, проще в монтаже и эксплуатации. Холодильные агрегаты, в состав которых входят конденсаторы водяного охлаждения, более компактны, чем агрегаты с конденсаторами воздушного охлаждения. Кроме того, при эксплуатации они издают меньше шума.

Конденсаторы с водяным охлаждением различают по характеру движения воды: проточного типа и оро­сительные, а по конструкции – кожухозмеевиковые, двухтрубные и кожухотрубные.

Основным типом являются горизонтальные кожухотрубные конден­саторы (рис. 5.3). В зависимости от вида хладагента в конструкции аммиачных и фреоновых конденсаторов есть некоторые отличия. По величи­не теплопередающей поверхности аммиачные конденсаторы охватывают диапазон, примерно от 30 до 1250 м 2 , а фреоновые – от 5 до 500 м 2 . Кроме того, выпускаются аммиачные вертикальные кожухотрубные конденсаторы с площадью теплопередающей поверхности от 50 до 250 м 2 .

Кожухотрубные конденсаторы используют в машинах средней и большой производительности. Горячие пары хладагента поступают че­рез патрубок 3 (рис. 5.3) в межтрубное пространство и конденсируются на наружной поверхности пучка горизонтальных труб.

Внутри труб под напором насоса циркулирует охлаждающая вода. Трубы развальцованы в трубных решетках, закрыты снаружи водяными крышками с перегородками, создающими несколько горизонтальных ходов (2-4-6). Вода поступает через патрубок 8 снизу и выходит через патрубок 7. На этой же водяной крышке имеется вентиль 6 для выпуска воздуха из водяного пространства и вентиль 9 для слива воды при реви­зии или ремонте конденсатора.

Рис.5.3 - Горизонтальные кожухотрубные конденсаторы

Сверху аппарата имеется предохранительный клапан 1, соединяю­щий межтрубное пространство аммиачного конденсатора с трубопрово­дом, выведенным наружу, выше конька крыши самого высокого здания в радиусе 50 м. Через патрубок 2 подсоединяется уравнительная линия, соединяющая конденсатор с ресивером, куда выводится жидкий хлада­гент через патрубок 10 из нижней части аппарата. Снизу к корпусу при­варен маслосборник с патрубком 11 для слива масла. Уровень жидкого хладагента в нижней части кожуха контролируется с помощью указате­ля уровня 12. При нормальной работе весь жидкий хладагент должен сливаться в ресивер.

Сверху кожуха имеется вентиль 5 для спуска воздуха, а также пат­рубок для подсоединения манометра 4.

Вертикальные кожухотрубные конденсаторы применяются в аммиач­ных холодильных машинах большой производительности, они рассчитаны на тепловую нагрузку от 225 до 1150 кВт и устанавливаются снаружи ма­шинного зала, не занимая его полезную площадь.

В последнее время появились конденсаторы пластинчатого типа. Высокая интенсивность теплообмена в пластинчатых конденсато­рах, по сравнению с кожухотрубными, позволяет при одинаковой тепловой нагрузке примерно вдвое уменьшить металлоемкость аппарата и в 3–4 раза повысить компактность.

Воздушные конденсаторы применяют главным образом в машинах малой и средней производительности. По характеру движения воздуха их делят на два типа:

Со свободным движением воздуха; такие конденсаторы используют в машинах очень малой производительности (примерно до 500 Вт), применяемых в бытовых холодильниках;

С принудительным движением воздуха, то есть с обдувом теплопередающей поверхности с помощью осевых вентиляторов. Этот тип конденсатора наиболее применим в машинах малой и средней про­изводительности, однако в последнее время в связи с дефицитом воды они все больше используются и в машинах большой произво­дительности.

Конденсаторы воздушного типа применяют в холодильных агрегатах с сальниковыми, бессальниковыми и герметичными компрессорами. Конструкции конденсаторов однотипные. Конденсатор состоит из двух или более секций, соединенных последовательно калачами или параллельно коллекторами. Секции представляют собой прямые или U-образные трубки, собранные в змеевик с помощью калачей. Трубы – стальные, медные; ребра – стальные или алюминиевые.

Конденсаторы с принудительным движением воздуха используют в торговых холодильных агрегатах.

Расчет конденсаторов

При проектировании конденсатора расчет сводится к определению его теплопередающей поверхности и (если он с водяным охлаждением) количества расходуемой воды. Прежде всего подсчитывают действительную теп­ловую нагрузку на конденсатор

где Q к – действительная тепловая нагрузка на конденсатор, Вт;

Q 0 – холодопроизводительность компрессора, Вт;

N i – индикаторная мощность компрессора, Вт;

N е – эффективная мощность компрессора, Вт;

h м – механический к. п. д. компрессора.

В агрегатах с герметичными или бессальниковыми компрессорами тепловую нагрузку на конденсатор сле­дует определять но формуле:

(5.7)

где N э – электрическая мощность на клеммах электродвигателя компрессора, Вт;

h э – к. п. д. электродвигателя.

Теплопередающая поверхность конденсатора определяется по формуле:

(5.8)

где F – площадь теплопередающей поверхности, м 2 ;

к – коэффициент теплопередачи конденсатора, Вт/(м 2 ×К);

Dt m – средняя логарифмическая разность между температурами конденсации холодильного агента и охлаждающей воды или воздуха, 0 С;

q F – плотность теплового потока, Вт/м 2 .

Среднюю логарифмическая разность определяют по формуле:

(5.9)

где t в1 – температура воды или воздуха на входе в конденсатор, 0 С;

t в2 – температура воды или воздуха на выходе из конденсатора, 0 С;

t к – температура конденсации холодильного агрегата, 0 С.

Коэффициенты теплопередачи различных типов конденсаторов приведены в табл. 5.1.

Таблица 5.1 - Коэффициенты теплопередачи конденсаторов

Оросительный для аммиака

Испарительный для аммиака

С воздушным охлаждением (при принудительной циркуляции воздуха) для хладонов

800…1000 460…580 * 700…900 700…900 465…580 20…45 *

Значения к определены для оребренной поверхности.

Задача 1

Поток горячего продукта, выходящего из реактора, необходимо охладить с начальной температуры t 1н = 95°C до конечной температуры t 1к = 50°C, для этого его направляют в холодильник, куда подают воду с начальной температурой t 2н = 20°C. Требуется рассчитать ∆t ср в условиях прямотока и противотока в холодильнике.

Решение: 1) Конечная температура охлаждающей воды t 2к в условии прямоточного движения теплоносителей не может превысить значение конечной температуры горячего теплоносителя (t 1к = 50°C), поэтому примем значение t 2к = 40°C.

Рассчитаем средние температуры на входе и выходе из холодильника:

∆t н ср = 95 - 20 = 75;

∆t к ср = 50 - 40 = 10

∆t ср = 75 - 10 / ln(75/10) = 32,3 °C

2) Конечную температуру воды при противоточном движении примем такой же, как и при прямоточном движении теплоносителей t 2к = 40°C.

∆t н ср = 95 - 40 = 55;

∆t к ср = 50 - 20 = 30

∆t ср = 55 - 30 / ln(55/30) = 41,3°C

Задача 2.

Используя условия задачи 1 определить требуемую поверхность теплообмена (F) и расход охлаждающей воды (G). Расход горячего продукта G = 15000 кг/ч, его теплоемкость С = 3430 Дж/кг·град (0,8 ккал·кг·град). Охлаждающая вода имеет следующие значения: теплоемкость с = 4080 Дж/кг·град (1 ккал·кг·град), коэффициент теплопередачи k = 290 Вт/м 2 ·град (250 ккал/м 2 *град).

Решение: Используя уравнение теплового баланса, получим выражение для определения теплового потока при нагревании холодного теплоносителя:

Q = Q гт = Q хт

откуда: Q = Q гт = GC (t 1н - t 1к) = (15000/3600)·3430·(95 - 50) = 643125 Вт

Принимая t 2к = 40°C, найдем расход холодного теплоносителя:

G = Q/ c(t 2к - t 2н) = 643125/ 4080(40 - 20) = 7,9 кг/сек = 28 500 кг/ч

Требуемая поверхность теплообмена

при прямотоке:

F = Q/k·∆t ср = 643125/ 290·32,3 = 69 м 2

при противотоке:

F = Q/k·∆t ср = 643125/ 290·41,3 = 54 м 2

Задача 3

На производстве осуществляется транспорт газа по стальному трубопроводу наружным диаметром d 2 = 1500 мм, толщиной стенки δ 2 = 15 мм, теплопроводностью λ 2 = 55 Вт/м·град. Внутри трубопровод футерован шамотным кирпичом, толщина которого δ 1 = 85 мм, теплопроводность λ 1 = 0,91 Вт/м·град. Коэффициент теплоотдачи от газа к стенке α 1 = 12,7 Вт/м 2 ·град, от наружной поверхности стенки к воздуху α 2 = 17,3 Вт/м 2 ·град. Требуется найти коэффициент теплопередачи от газа к воздуху.

Решение: 1) Определим внутренний диаметр трубопровода:

d 1 = d 2 - 2·(δ 2 + δ 1) = 1500 - 2(15 + 85) = 1300 мм = 1,3 м

средний диаметр футеровки:

d 1 ср = 1300 + 85 = 1385 мм = 1,385 м

средний диаметр стенки трубопровода:

d 2 ср = 1500 - 15 = 1485 мм = 1,485 м

Рассчитаем коэффициент теплопередачи по формуле:

k = [(1/α 1)·(1/d 1) + (δ 1 /λ 1)·(1/d 1 ср)+(δ 2 /λ 2)·(1/d 2 ср)+(1/α 2)] -1 = [(1/12,7)·(1/1,3) + (0,085/0,91)·(1/1,385)+(0,015/55)·(1/1,485)+(1/17,3)] -1 = 5,4 Вт/м 2 ·град

Задача 4

В одноходовом кожухотрубчатом теплообменнике осуществляется подогрев метилового спирта водой с начальной температуры 20 до 45 °C. Поток воды охлаждается с температуры 100 до 45 °C. Трубный пучек теплообменника содержит 111 труб, диаметр одной трубы 25х2,5 мм. Скорость течения метилового спирта по трубкам 0,8 м/с (w). Коэффициент теплопередачи равен 400 Вт/м 2 ·град. Определить общую длину трубного пучка.

Определим среднюю разность температур теплоносителей как среднелогарифмическое.

∆t н ср = 95 - 45 = 50;

∆t к ср = 45 - 20 = 25

∆t ср = 45 + 20 / 2 = 32,5°C

Определим массовый расход метилового спирта.

G сп = n·0,785·d вн 2 ·w сп ·ρ сп = 111·0,785·0,02 2 ·0,8· = 21,8

ρ сп = 785 кг/ м 3 - плотность метилового спирта при 32,5°C найдена из справочной литературы.

Затем определим тепловой поток.

Q = G сп с сп (t к сп - t н сп) = 21,8·2520 (45 - 20) = 1,373·10 6 Вт

c сп = 2520 кг/ м 3 - теплоемкость метилового спирта при 32,5°C найдена из справочной литературы.

Определим требуемую поверхность теплообмена.

F = Q/ K∆t ср = 1,373·10 6 / (400·37,5) = 91,7 м 3

Вычислим общую длину трубного пучка по среднему диаметру труб.

L = F/ nπd ср = 91,7/ 111·3,14·0,0225 = 11,7 м.

Задача 5

Для нагрева потока 10-% раствора NaOH от температуры 40°C до 75°C используют пластинчатый теплообменный аппарат. Расход гидроксида натрия составляет 19000 кг/ч. В качестве нагревающего агента используется конденсат водяного пара, его расход составляет 16000 кг/ч, начальная температура 95°C. Принять коэффициент теплообмена равный 1400 Вт/м 2 ·град. Необходимо произвести расчет основных параметров пластинчатого теплообменного аппарата.

Решение: Найдем количество передаваемого тепла.

Q = G р с р (t к р - t н р) = 19000/3600 · 3860 (75 - 40) = 713 028 Вт

Из уравнения теплового баланса определим конечную температуру конденсата.

t к х = (Q·3600/G к с к) - 95 = (713028·3600)/(16000·4190) - 95 = 56,7°C

с р,к - теплоемкость раствора и конденсата найдены из справочных материалов.

Определение средних температур теплоносителей.

∆t н ср = 95 - 75 = 20;

∆t к ср = 56,7 - 40 = 16,7

∆t ср = 20 + 16,7 / 2 = 18,4°C

Определим сечение каналов, для расчета примем массовую скорость конденсата W к = 1500 кг/м 2 ·сек.

S = G/W = 16000/3600·1500 = 0,003 м 2

Принимая ширину канала b = 6 мм, найдем ширину спирали.

B = S/b = 0,003/ 0,006 = 0,5 м

Произведем уточнение сечения канала

S = B·b = 0,58·0,006 = 0,0035 м 2

и массовой скорости потоков

W р = G р /S = 19000/ 3600·0,0035 = 1508 кг/ м 3 ·сек

W к = G к /S = 16000/ 3600·0,0035 = 1270 кг/ м 3 ·сек

Определение поверхности теплообмена спирального теплообменника осуществляется следующим образом.

F = Q/K∆t ср = 713028/ (1400·18,4) = 27,7 м 2

Определим рабочую длину спирали

L = F/2B = 27,7/(2·0,58) = 23,8 м

t = b + δ = 6 + 5 = 11 мм

Для вычисления числа витков каждой спирали необходимо принять начальный диаметр спирали исходя из рекомендаций d = 200 мм.

N = (√(2L/πt)+x 2) - x = (√(2·23,8/3,14·0,011)+8,6 2) - 8,6 = 29,5

где х = 0,5 (d/t - 1) = 0,5 (200/11 - 1) = 8,6

Наружный диаметр спирали определяется следующим образом.

D = d + 2Nt + δ = 200 + 2·29,5·11 + 5 = 860 мм.

Задача 6

Определить гидравлическое сопротивление теплоносителей создаваемое в четырехходовом пластинчатом теплообменном аппарате с длиной каналов 0,9 м и эквивалентным диаметром 7,5 ·10 -3 при охлаждении бутилового спирта водой. Бутиловый спирт имеет следующие характеристики расход G = 2,5 кг/с, скорость движения W = 0,240 м/с и плотность ρ = 776 кг/м 3 (Критерий Рейнольдса Re = 1573 > 50). Охлаждающая вода имеет следующие характеристики расход G = 5 кг/с, скорость движения W = 0,175 м/с и плотность ρ = 995 кг/м 3 (Критерий Рейнольдса Re = 3101 > 50).

Решение: Определим коэффициент местного гидравлического сопротивления.

ζ бс = 15/Re 0,25 = 15/1573 0,25 = 2,38

ζ в = 15/Re 0,25 = 15/3101 0,25 = 2,01

Уточним скорость движения спирта и воды в штуцерах (примем d шт = 0,3м)

W шт = G бс /ρ бс 0,785d шт 2 = 2,5/776 ·0,785·0,3 2 = 0,05 м/с менее 2 м/с поэтому можно не учитывать.

W шт = G в /ρ в 0,785d шт 2 = 5/995 ·0,785·0,3 2 = 0,07 м/с менее 2 м/с поэтому можно не учитывать.

Определим значение гидравлического сопротивления для бутилового спирта и охлаждающей воды.

∆Р бс = хζ·(l /d ) · (ρ бс w 2 /2) = (4·2,38·0,9/ 0,0075)·(776·0,240 2 /2) = 25532 Па

∆Р в = хζ·(l /d ) · (ρ в w 2 /2) = (4·2,01·0,9/ 0,0075)·(995·0,175 2 /2) = 14699 Па.

Подробности

Расчет чиллера. Как расчитать холодопроизводительность или мощность чиллера и правильно осуществить его подбор.

Как правильно сделать , на что в первую очередь надо полагаться чтобы, среди множества предложений, произвести качественный ?

На этой странице мы дадим несколько рекомендаций, прислушавшись к которым вы приблизитесь к тому, чтобы сделать правильный .

Расчет холодопроизводительности чиллера. Расчет мощности чиллера - его мощности охлаждения.

В первую очередь по формуле , в которой участвует объем охлаждаемой жидкости; изменение температуры жидкости, которое надо обеспечить охладителем; теплоемкость жидкости; ну и конечно время за которое этот объем жидкости надо охладить - определяется мощность охлаждения:

Формула охлаждения, т.е. формула вычисления необходимой холодопроизводительности:

Q = G*(Т1- Т2)*C рж *pж / 3600

Q – холодопроизводительность, кВт/час

G - объёмный расход охлаждаемой жидкости, м 3 /час

Т2 - конечная температура охлаждаемой жидкости, о С

Т1 - начальная температура охлаждаемой жидкости, о С

C рж -удельная теплоёмкость охлаждаемой жидкости, кДж / (кг* о С)

- плотность охлаждаемой жидкости, кг/м 3

* Для воды C рж *pж = 4,2

По данной формуле определяется необходимая мощность охлаждения и она является основной при выборе чиллера.

  • Формулы пересчета размерностей чтобы рассчитать холодопроизводительность водоохладителя :

1 кВт = 860 кКал/час

1 кКал/час = 4,19 кДж

1 кВт = 3,4121 кБТУ/час

Подбор чиллера

Для того, чтобы произвести подбор чиллера - очень важно выполнить правильное составление технического задания на расчет чиллера, в котором участвуют не только параметры самого водоохладителя, но и данные о его размещении и условии его совместной работы с потребителем. На основании выполненных вычислений можно - выбрать чиллер.

Не нужно забывать про то, в каком регионе Вы находитесь. Например, расчет для города Москва будет отличаться от расчета для города Мурманск так как максимальные температуры двух данных городов отличается.

П о таблицам параметров водоохлаждающих машин делаем первый выбор чиллера и знакомимся с его характеристиками. Далее, имея на руках основные характеристики выбранной машины, такие как: - холодопроизводительность чиллера , потребляемая им электрическая мощность, есть ли в его составе гидромодуль и его - подача и напор жидкости, объём проходящего через охладитель воздуха (который нагревается) в куб.метрах в секунду - Вы сможете проверить возможность установки охладителя воды на выделенной площадке. После того, как предполагаемый охладитель воды удовлетворит требованиям технического задания и вероятнее всего сможет работать на подготовленной для него площадке рекомендуем обратиться к специалистам, которые проверят Ваш выбор.

Выбор чиллера - особенности, которые надо предусмотреть при подборе чиллера.

Основные требования к месту будущей установки охладителя воды и схемы его работы с потребителем :

  • Если запланированное место в помещении, то - возможно ли в нем обеспечить большой обмен воздуха, возможно ли в это помещение внести охладитель воды, возможно ли в нем будет его обслуживать?
  • Если будущее размещение охладителя воды на улице - будет ли необходимость его работы в зимний период, возможно ли использование незамерзающих жидкостей, возможно ли обеспечить защиту охладителя воды от внешних воздействий (анти-вандальная, от листьев и веток деревьев, и т.д.) ?
  • Если температура жидкости, до которой её надо охлаждать ниже +6 о С или она выше + 15 о С - чаще всего такой диапазон температур не входит в таблицы быстрого выбора. В этом случае рекомендуем обратиться к нашим специалистам.
  • Следует определиться с расходом охлаждаемой воды и необходимым давлением, которое должен обеспечить гидромодуль охладителя воды - необходимое значение может отличаться от параметра выбранной машины.
  • Если температуру жидкости необходимо понизить более чем на 5 градусов, то схема прямого охлаждения жидкости водоохладителем не применяется и необходим расчет и комплектация дополнительным оборудованием.
  • Если охладитель будет использоваться круглосуточно и круглогодично, а конечная температура жидкости достаточно высока - на сколько целесообразно будет применение установки с ?
  • В случае применения незамерзающих жидкостей высоких концентраций требуется дополнительный расчет производительности испарителя водоохладителя.

Программа подбора чиллера

К сведению: даёт только приближённое понимание о необходимой модели охладителя и соответствия его техническому заданию. Далее необходима проверка расчетов специалистом. При этом Вы можете ориентироваться на полученную в результате расчетов стоимость +/- 30% (в случаях с низкотемпературными моделями охладителей жидкости - указанная цифра ещё больше) . Оптимальная модель и стоимость будут определены только после проверки расчетов и сопоставления характеристик разных моделей и производителей нашим специалистом.

Подбор чиллера ОнЛайн

Вы можете сделать обратившись к нашему онлайн консультанту, который быстро и технически обоснованно даст ответ на Ваш вопрос. Также консультант может выполнить исходя из кратко написанных параметров технического задания расчет чиллера онлайн и дать приблизительно подходящую по параметрам модель.

Расчеты, произведённые не специалистом часто приводят к тому, что выбранный водоохладитель не соответствует в полной мере ожидаемым результатам.

Компания Питер Холод специализируется на комплексных решениях по обеспечению промышленных предприятий оборудованием, которое полностью удовлетворяет требования технического задания на поставку системы водоохлаждения. Мы производим сбор информации для наполнения технического задания, расчет холодопроизводительности чиллера, определение оптимально подходящего охладителя воды, проверку с выдачей рекомендаций по его установке на выделенной площадке, расчет и комплектацию всех дополнительных элементов для работы машины в системе с потребителем (расчет бака аккумулятора, гидромодуля, дополнительных, при необходимости теплообменников, трубопроводов и запирающей и регулирующей арматуры).

Накопив многолетний опыт расчетов и последующих внедрений систем охлаждения воды на различные предприятия мы обладаем знаниями, по решению любых стандартных и далеко не стандартных задач связанных с многочисленными особенностями установки на предприятие охладителей жидкости, объединения их с технологическими линиями, настройке специфических параметров работы оборудования.

Самым оптимальный и точный и соответственно определение модели водоохладителя можно сделать очень быстро, позвонив или послав заявку инженеру нашей компании.

Дополнительные формулы для расчета чиллера и определения схемы его подключения к потребителю холодной воды (расчет мощности чиллера)

  • Формула расчёта температуры, при смешении 2-х жидкостей (формула смешения жидкостей):

Т смеш = (М1*С1*Т1+М2*С2*Т2) / (С1*M1+С2*М2)

Т смеш – температура смешанной жидкости, о С

М1 – масса 1-ой жидкости, кг

C1 - удельная теплоёмкость 1-ой жидкости, кДж/(кг* о С)

Т1 - температура 1-ой жидкости, о С

М2 – масса 2-ой жидкости, кг

C2 - удельная теплоёмкость 2-ой жидкости, кДж/(кг* о С)

Т2 - температура 2-ой жидкости, о С

Данная формула используется, если применяется аккумулирующая емкость в системе охлаждения, нагрузка непостоянна по времени и температуре (чаще всего при расчете необходимой мощности охлаждения автоклав и реакторов)

Мощность охлаждения чиллера.

Москва..... Воронеж..... Белгород..... Нижневартовск..... Новороссийск.....
Екатеринбург..... в Ростове-на-Дону..... Смоленск..... Киров..... Ханты-Мансийск.....
Ростов-на-Дону..... Пенза..... Владимир..... Астрахань..... Брянск.....
Казань..... Самара..... Набережные Челны..... Рязань..... Нижний Тагил.....
Краснодар..... Тольятти..... Чебоксары..... Волжский..... Нижегородская область.....
Нижний Новгород..... Ростов на Дону..... Саратов..... Сургут..... Краснодарский край.....
в Ростове на Дону..... Оренбург..... Калуга..... Ульяновск..... Томск.....
Волгоград..... Тверь..... Марий Эл..... Тюмень..... Омск.....
Уфа..... Сочи..... Ярославль..... Орел..... Новгородская область.....

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Ваш мастер по ремонту. Отделочные работы, наружные, подготовительные